
Ray Culbertson

CSAID workshop

Jan 17, 2024

Doc–47453-v5

Mu2e Production Techniques

Mu2e time frame

1/17/2024CSAID workshop2

• Mu2e detector components in final assembly

• Subdetector Vertical Slice Tests in progress or starting

• We do some VST production now

• Global Runs (horizontal slice tests) Mar 1, quarterly

– recently: this might request processing

• Calorimeter moves to hall in a few months

• Cosmic rays, with production and calibration in ~July

• Tracker moves to hall in fall

• More cosmic rays, production, calibration

• KPP (detector sub-project end) in ~ one year or so

Topic 1 - Job control and recovery

1/17/2024CSAID workshop3

how to set up production tools to detect errors and run

recovery with high reliability, minimal resource usage, and

minimal operator effort

Three Mu2e production styles

1/17/2024CSAID workshop4

• Permissive

– POMS resubmits based on job's status

– no checks on output, goal is 97% complete

– used for current simulation

• Rigid

– no POMS

– jobs write to temp locations

– post-processing careful checks on output

– used in older production simulation, and some today

• Proposed

– POMS resubmits based on ddisp status

– recovery jobs can fix output, no post-processing

Permissive production style

1/17/2024CSAID workshop5

• Characteristics

– All POMS, fife_launch, and fife_wrap based

– effectively no job script

– jobsub completion percentage requested 95-100%

– no recoveries, ignore held jobs

– write by add_to_dataset, add_metadata, job_output.dest

• Results

– little setup, maintenance, effectively no experiment code

– usually, mostly works OK

– not uncommon to have incomplete datasets or file records

– not uncommon to have different counts for different datasets

output from the same job

– no CRC check for incorrect writes

Rigid production style

1/17/2024CSAID workshop6

• Characteristics

– fcl generated by operator before each stage runs

– No POMS, only custom experiment scripts

– one universal job script on the worker node

– current system, in total, few 1000's lines of perl code

– only used for simulation

• Results

– always 100% correct, CRC-checked end-to-end

– always complete output

– often requires several operator steps to repair, complete

Rigid production style writes (1)

1/17/2024CSAID workshop7

• One stage starts with one non-DAG submission

– fixed, ordered list of pre-generated fcl files

– jobs tracked by input fcl file

• Job script

– run one art exe

– mkdir a unique (~hashed) dCache output dir

– write output files to this dir

– write manifest of files and CRC's, including manifest self-CRC

– after write, mv hashed dir to JID.PROCESS

• claims the job slot against any rogue job restarts

• signals write is done

Rigid production style writes (2)

1/17/2024CSAID workshop8

As jobs finish

• Operator runs a check script

– checks output file CRC's

– make an entry in SAM - a virtual file based on fcl file

• checks for duplicates (output from same fcl file)

• defines what jobs are done

– mv output dir from temp dir to "good" dir

• Operator, when submission is complete

– generate recovery from missing virtual entries in SAM

– repeated until no more missing jobs

• Operator, when recoveries are done

– copy files to permanent location

• recoverable, with CRC check

– declare output files to SAM

Rigid production style results

1/17/2024CSAID workshop9

• Pros

– CRC ensured at every step

– no duplicates

– 100% recoveries

– only accept all or no output files from a particular job

• Cons

– several operator steps

• automation could be improved

– two extra writes to dCache

– extra virtual SAM entry

– no POMS

Proposed production style (1)

1/17/2024CSAID workshop10

Main concept

• a grid job will only exit with success if the job can prove all

output is in the final location with correct CRC

• if a job fails for any reason, resubmit it

• the recovery job will repair/replace output files

• can be repeated as needed

Main points

• no post-POMS processing of files

• no intermediate dCache read/writes

• ~nothing outside of POMS campaign

– no feedback from post-processing to POMS resubmission

• ~100% automated recovery

Proposed production style (2)

1/17/2024CSAID workshop11

• POMS and metacat based

• stages driven off ddisp input dataset projects

Job script procedure

• write output files to final dCache location

• check file CRC via dCache database REST API

– exit on problems, or, optionally, rewrite

• declare files to metacat

• if output files or metacat records exist, overwrite them

• on any error, exit with ddisp(no retry)/job failure

• if all output steps are successful, declare ddisp/job success

• POMS recoveries based on ddisp consumer status

A job timeline

1/17/2024CSAID workshop12

• job might be interrupted anytime - with partial output

• set ddisp timeout longer than jobsub expected-lifetime

• job has "write permit" during ddisp active time

Job time

Jobsub expected lifetime

ddisp time

ddisp timeout

Error categories

1/17/2024CSAID workshop13

• Daily, must be anticipated, handled automatically

– dCache read/write failures, overloads

– exe, conditions database, or script problems

– timeouts, going to hold

– container kills job

• Rare, but hopefully accounted for

– tools (condor/metacat/ddisp) disconnect

– tools show known rare behavior

• Arcane, would be a problem for any system

– tools report success on failure

– databases, files corrupt in place

– random interfering activity

Error response (1)

1/17/2024CSAID workshop14

• Mostly, jobs write, check OK, end with success

• Daily errors

– script ends by reporting failure to ddisp

– job dies, no ddisp report, ddisp times out

– both these failures might leave partial output

• Daily errors handled

– POMS sees failed/timed out ddisp file, submit recovery for

this file

– new job overwrites any existing output, returns success

• Data is released to the next stage or to users when all

projects are complete and stopped

Error response (2)

1/17/2024CSAID workshop15

• Rare errors

– jobs are running w/o full connection to condor

– can't write job records to elasticsearch

– jobs can't contact metacat or ddisp

– ddisp reboots?

• only a problem if correct, reported output is overwritten by

rogue job bad output

– more than one process has write permit at the same time

– a job with write permit occurs after another reports success

• both would indicate a fundamental failure of POMS+ddisp,

and the failure modes should be eliminated

Strong rules

1/17/2024CSAID workshop16

Required so that it always works

1. ddisp timeout must be longer than job timeout so no output

write ever occurs outside the ddisp expected write window

– assume job timeouts work - if not, add a timeout in script

– can timeouts fail? period check? job can't be killed? D state?

2. the same input file is never active with write permit for

more than one ddisp consumer

– recovery project must not include files that might be or

become active in previous projects - all previous consumers

resolved by report, timeout, or not started and canceled

3. a set of job output files is not used until the file is part of a

successful consumer

POMS behavior

1/17/2024CSAID workshop17

Required so that it always works

When considering a recovery job

1. wait for no active ddisp consumers

2. stop project

3. select all files not ending in successful consumer

This assumes that POMS makes a new ddisp project when

submitting recoveries, but that's not really necessary

POMS behavior model OneP

1/17/2024CSAID workshop18

Assume there is only one ddisp project per compaign/stage or

slice of input files.

When considering a recovery job

1. wait for some large fraction of condor jobs to end

2. submit some number of recovery jobs, pointed to the

existing, running ddisp project

3. repeat until the project is complete or retries exhausted

see next for details

POMS behavior model OneP - details

1/17/2024CSAID workshop19

Using only one ddisp project for initial submit and recoveries

• Submit 100 jobs

• find 60 success, 10 fail, 10 timeout, 10 running, 10 unrun

• estimate the number of recoveries needed, with extras

– in this case, maybe 20 or 30 recoveries

• submit 30 recoveries

• let ddisp sort it out

– no jobs can clash (from strong rules)

– extra jobs are rejected by "ddisp next", and just exit

• One could submit 105% of the project size every time

• recovery could still work, even weeks later

What will it take to get OneP done

1/17/2024CSAID workshop20

• From Mu2e

– code mostly exists, need tool features to finish testing

– Mu2e DH code is ~2k lines of python using tool API's

– mostly Mu2e conventions, conveniences

• Tools:

– POMS must implement OneP recovery pattern

– ddisp needs the virtual project (~done)

– ddisp must sort "timeout" to "retry"

• Ideally

– metacat allows "--force" to unretire update in one step

– Rucio allows file updates (CRC, size)

– metacat does not require a dataset when declaring a file

Topic 2 - Rucio in production

1/17/2024CSAID workshop21

if production output is written directly to the file final location,

and might be replaced during recoveries, then Rucio is a not a

good tool for storing locations at this stage

General approaches (1)

1/17/2024CSAID workshop22

1) Rigid

• files are written, and recovered, to temp locations

• when recoveries are done, copy files to permanent location

and then write permanent Rucio record

• forces delay of following stage until Rucio record is

available, or provide a secondary mechanism to find files

General approaches (2)

1/17/2024CSAID workshop23

2) Proposed style

write files to final location, recover in final location

2a) with Rucio

• write Rucio record, overwrite this during a recovery job

• ddisp for following stages works OK

• problem: Rucio "can't" update CRC for the fixed file name

2b) Proposed style w/o Rucio

• do not write Rucio records during grid jobs

• provide a secondary mechanism for locations for following

stages

Mu2e locations

1/17/2024CSAID workshop24

• fixed file names (no hashes)

tier.owner.description.configuration.sequencer.format

• we have three locations (RSE's in Rucio language)

– dCache : tape, disk (persistent) and scratch

– more can be added

• in all cases:

file_dcache_path = simple_function(location, file_name)

• files with metacat, Rucio entries are in one of RSE locations

• unregistered files can go unstructured directories

Mu2e Proposal

1/17/2024CSAID workshop25

• follow "Proposed w/o Rucio" general style

– during production, do not write Rucio records

– when production tranche is complete, declare Rucio records

– Rucio records must be maintained for future DH flexibility

– records are verified coherent automatically by a separate

validation process (Mu2e does this already - very useful)

• problem: how does ddisp work w/o Rucio records?

– use new "virtual dataset" ddisp project which skips Rucio

– POMS stage must know I/O RSE by a separate mechanism

– for production, almost always a constant

– in stage config?

– might include adding an RSE flag in metacat dataset record

Topic 3, some notes

1/17/2024CSAID workshop26

• ddisp virtual project is ~done

• metacat and Rucio should not require a file is associated

with a dataset - why this constraint?

• might be helpful if "ddisp create project -c" can provide

content extracted from a dataset metadata as well as a file

• packaging declad is a high priority request for us

Summary

1/17/2024CSAID workshop27

• Mu2e proposes a production style

– write output from grid to final location

– all recoveries directly within POMS

– must allow file replacement and metacat record update

– requires solid control of write permits via ddisp

– hopefully we can implement OneP

• Mu2e proposes writing Rucio records after production is

done

• We have a few months to complete this development and

commission production before cosmic data starts

• the same collaborators are working on the same time frame

to complete declad (FTS), spack, AL9, and other transitions

	Slide 1
	Slide 2: Mu2e time frame
	Slide 3: Topic 1 - Job control and recovery
	Slide 4: Three Mu2e production styles
	Slide 5: Permissive production style
	Slide 6: Rigid production style
	Slide 7: Rigid production style writes (1)
	Slide 8: Rigid production style writes (2)
	Slide 9: Rigid production style results
	Slide 10: Proposed production style (1)
	Slide 11: Proposed production style (2)
	Slide 12: A job timeline
	Slide 13: Error categories
	Slide 14: Error response (1)
	Slide 15: Error response (2)
	Slide 16: Strong rules
	Slide 17: POMS behavior
	Slide 18: POMS behavior model OneP
	Slide 19: POMS behavior model OneP - details
	Slide 20: What will it take to get OneP done
	Slide 21: Topic 2 - Rucio in production
	Slide 22: General approaches (1)
	Slide 23: General approaches (2)
	Slide 24: Mu2e locations
	Slide 25: Mu2e Proposal
	Slide 26: Topic 3, some notes
	Slide 27: Summary

