
Profiling Work
in Preparation for Optimization with GPUs
Marc Paterno
January 23, 2024
1/19 January 23, 2024 Marc Paterno | Profiling Work

Why this work?

Goal is to accelerate DUNE physics processing using GPUs, for some algorithm
in LArSoft. This aligns with the LArSoft “high priority” goal list.
Multi-step process:
1. Identify a likely candidate module from LArSoft.1
2. Collect performance data to see where the code is taking the most time.
3. Improve the serial algorithm performance.
4. Parallelize the serial algorithm.
5. If the result is still insufficient, adapt the parallel algorithm for GPU usage.

PDFastSimPAR was the clear most time-consuming module used in the DUNE
workflows that is found in LArSoft.

1Thank you to Tom Junk and Laura Paulucci for their guidance.

2/19 January 23, 2024 Marc Paterno | Profiling Work

Workflow based on a standard DUNE FD simulation workflows
lar configurations using this module:

prodbackground_radiological_decay0_dunevd10kt_1x8x14.fcl
prodmarley_nue_flat_radiological_decay0_dunevd10kt_1x8x14_
3view_30deg.fcl

Geant4 simulation used as input:
/pnfs/dune/persistent/users/lpaulucc/leprodtests/
prodradiological_decay0_dunevd10kt_1x8x14_gen.root

To make profiling data collection easier, I broke the workflow into two parts:
Everything before the PDFastSimPAR module, which I write to an art/ROOT
file, and
the PDFastSimPAR module run alone, on the output from the previous step.

3/19 January 23, 2024 Marc Paterno | Profiling Work

Profiling data collection

I am using the Intel VTune performance analysis suite of tools.
Running a prof build on a SLF7 Linux machine.
Hardware is Skylake AVX512.
Standard prof build does not activate the compiler options to make full use
of the instruction set. Essentially no automatic vectorization is done.
VTune collects a huge amount of data; I run on only 1 event to keep the data
analysis feasible.
Happily, previous analysis shows that the time taken to process events in the
given file is very uniform.

4/19 January 23, 2024 Marc Paterno | Profiling Work

First profiling results

Biggest hotspot in LArSoft code is phot::fast_acos, for a total of 7.111
seconds (out of 48.22 seconds PDFastSimPAR::produce).
Called from two places within the code.

5/19 January 23, 2024 Marc Paterno | Profiling Work

phot::fast_acos

Implementation from Approximations for Digital Computers, C. Hastings, Jr,
published by Princeton University Press (1955), with flourishes that seem to
be related to an implementation posted by NVIDIA.
Invented before the IEEE floating point standard was devised.
Not all computers at that time had instruction sets that included trig
functions.
Do we need such a thing today?

6/19 January 23, 2024 Marc Paterno | Profiling Work

Microbenchmarking results

Data collected on the same machine as used for VTune results.

ns/op ins/op branches/op name relative
38.00 217 35 acosd 3.072
22.73 114 20 acosf 1.838
12.37 85 9 fast_acos 1.000

fast_acos is clearly faster than even the single-precision math library
function.
Less time per operation, because of fewer instructions and fewer branches
encountered.

7/19 January 23, 2024 Marc Paterno | Profiling Work

phot::fast_acos shape of the curve

0

1

2

3

−1.0 −0.5 0.0 0.5 1.0
x

fa
st

_a
co

s

8/19 January 23, 2024 Marc Paterno | Profiling Work

phot::fast_acos difference from C library

−4e−05

0e+00

4e−05

−1.0 −0.5 0.0 0.5 1.0
x

st
d:

:a
co

s(
do

ub
le

)
−

 fa
st

_a
co

s

9/19 January 23, 2024 Marc Paterno | Profiling Work

phot::fast_acos relative difference from C library

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

−1.0 −0.5 0.0 0.5 1.0
x

|fr
ac

tio
na

l d
iff

er
en

ce
|

10/19 January 23, 2024 Marc Paterno | Profiling Work

Is phot::fast_acos sufficiently accurate?

If not, then replacing it with std::acos is trivial; the cost is a factor of 1.8 in
the time taken for this operation.
If yes, then I have some modifications for you to consider…

11/19 January 23, 2024 Marc Paterno | Profiling Work

New implementations

hastings_acos is the same algorithm, stripped of flourishes that make sense
for GPUs but are counterproductive on CPUs.
hastings_acos_4 is the same mathematical form with slightly improved
constants. This results in an improved approximation with identical
instruction counts, branches, and execution time.
hastings_acos_5 is a similar mathematical form, with one more term in the
approximation. It yields a still better approximation, at some cost in
instruction counts and thus execution time.

12/19 January 23, 2024 Marc Paterno | Profiling Work

Benchmarking results
ns/op ins/op branches/op name relative
38.00 217 35 acosd 3.072
22.73 114 20 acosf 1.838
12.37 85 9 fast_acos 1.000
8.26 61 8 hastings_acos_5 0.668
7.06 57 8 hastings_acos 0.571
6.94 57 8 hastings_acos_4 0.561

The time difference between hastings_acos and hastings_acos4 is not
signficant. The instruction counts and branch counts are the same; the
generated assembly differs only in the values of the constants loaded into
memory. The difference in time reflects the precision with which nanobench
can measure the code.

13/19 January 23, 2024 Marc Paterno | Profiling Work

Comparison of absolute differences in calculated results

−4e−05

0e+00

4e−05

−1.0 −0.5 0.0 0.5 1.0
x

cy
an

: f
as

t_
ac

os
bl

ac
k:

 h
as

tin
gs

m
ag

en
ta

 h
as

tin
gs

_4
re

d:
 h

as
tin

gs
_5

14/19 January 23, 2024 Marc Paterno | Profiling Work

Comparison of absolute differences in calculated results

−4e−05

0e+00

4e−05

−0.10 −0.05 0.00 0.05 0.10
x

cy
an

: f
as

t_
ac

os
bl

ac
k:

 h
as

tin
gs

m
ag

en
ta

 h
as

tin
gs

_4
re

d:
 h

as
tin

gs
_5

15/19 January 23, 2024 Marc Paterno | Profiling Work

VTune results

Numbers are (inclusive) times, in seconds, spent in the named function, for
code using the given algorithm.

algorithm acos PDFastSimPAR::produce
fast_acos 7.111 48.22
hastings_acos_5 5.310 45.60
hastings_acos_4 4.130 44.71

16/19 January 23, 2024 Marc Paterno | Profiling Work

Backup slides.

double fast_acos(double x) {
double negate = double(x < 0.);
x = std::abs(x);
// following line is min(1.,x)
x -= double(x > 1.) * (x - 1.);
double ret = -0.0187293;
ret = ret * x;
ret = ret + 0.0742610;
ret = ret * x;
ret = ret - 0.2121144;
ret = ret * x;
ret = ret + 1.5707288;
ret = ret * std::sqrt(1. - x);
ret = ret - 2. * negate * ret;
return negate * M_PI + ret;

}

double hastings_acos(double xin) {
double const x = std::abs(xin);
double const a0 = 1.5707288;
double const a1 = -0.2121144;
double const a2 = 0.0742610;
double const a3 = -0.0187293;
double ret = a3;
ret *= x;
ret += a2;
ret *= x;
ret += a1;
ret *= x;
ret += a0;
ret *= std::sqrt(1.0-x);
if (xin >= 0) return ret;
return M_PI - ret;

}

How I generated hastings_acos_4 and hastings_acos_5
The functional form of all the “fast” algorithms is:

cos−1 𝑥 ≈
√

1−𝑥(𝑎0 +𝑥(𝑎1 +𝑥(𝑎2 +…)))
The coefficients 𝑎𝑖 are found by minimizing Δ:

Δ = max |𝑓(𝑥)− cos−1(𝑥)|, for −1 ≤ 𝑥 ≤ 1
The original algorithm has the fit parameters calculated in single precision.
hastings_acos has identical parameters but fewer operations & branches.
hastings_acos_4 has fit parameters calcluated to double precsion, and is
otherwise identical to hastings_acos_4.
hastings_acos_5 uses 5 fit parameters calculated to double precsion.
Using 6 parameters yielded a slower algorithm but no better accuracy.

19/19 January 23, 2024 Marc Paterno | Profiling Work

