
Kyle J. Knoepfel
23 January 2024
LArSoft coordination meeting

A glimpse of code development using Spack

This has meant multiple things over the years:
1. FNAL-created spack dev (a replacement for MRB)

LArSoft minimum viable product released in 2019; no response from experiments.

2. Upstream-provided spack develop
It works, but there’s a high barrier for entry for users.

3. Just providing externals required for development via spack load/env
The work presented here.

Code development using Spack

1/23/24 Kyle J. Knoepfel | Code development with Spack2

The goal is to develop multiple packages using Spack to provide external libraries
Try to give a familiar feel to MRB, but retain only those things most commonly used

Chosen approach

1/23/24 Kyle J. Knoepfel | Code development with Spack3

The goal is to develop multiple packages using Spack to provide external libraries
Try to give a familiar feel to MRB, but retain only those things most commonly used

For now:
mrb newDev (n)

mrb gitCheckout (g)

mrb install (i)

mrb test (t)

mrb zapBuild (z)

mrb zapDist (zd)

Chosen approach

1/23/24 Kyle J. Knoepfel | Code development with Spack4

Let me know if there are any you really think you need.

I already know about mrbsetenv, mrbslp, mrb uc and mrb uv.

• Each repository you want to develop should have a Spack recipe
This is not strictly true, but if you don’t do this, (a) it’ll likely be harder to setup external
libraries, and (b) you won’t be able to use that repository as a Spack package.

The recipe need not be part of the Spack mainline repository (e.g. fnal_art). Chaining
multiple Spack package repositories together is a scalable way to distribute packages.

The recipe can be very simple (spack can create a skeleton recipe for you)

Lessons learned

1/23/24 Kyle J. Knoepfel | Code development with Spack5

• Each repository you want to develop should have a Spack recipe
This is not strictly true, but if you don’t do this, (a) it’ll likely be harder to setup external
libraries, and (b) you won’t be able to use that repository as a Spack package.

The recipe need not be part of the Spack mainline repository (e.g. fnal_art). Chaining
multiple Spack package repositories together is a scalable way to distribute packages.

The recipe can be very simple (spack can create a skeleton recipe for you)

• You should not rely on the presence of specific environment variables
Spack recipes can (and do) set environment variables during (e.g.) spack load. But when
developing that code (i.e. building it) outside of Spack, those variables will either need to be
set explicitly or the code adjusted.

Resulted in various PRs to Cetmodules (thanks, Chris!) and changes to the art-suite
packages to significantly reduce dependence on environment variables.

Lessons learned

1/23/24 Kyle J. Knoepfel | Code development with Spack6

• The following assumes:
1. You already have Spack set up (instructions not given today)

2. You have a local Spack instance where you can install stuff (instructions not given today)

3. The packages under development are CMake-based

• This demo may help answer some questions but certainly not all.
I will answer what I can and delegate other questions to more expert individuals.

• We know that documentation is important and needs to be fleshed out.

Demo

1/23/24 Kyle J. Knoepfel | Code development with Spack7

Backup

1/23/24 Kyle J. Knoepfel | Code development with Spack8

Generate Spack MRB area using:

Spack MRB

1/23/24 Kyle J. Knoepfel | Code development with Spack9

$ tree -L 1 .
.
├── build
├── local
└── srcs

ß Contains local Spack repository

spack mrb \
 --name art-devel \
 --top ${PWD} \
 -D srcs/ %gcc@13.2.0 cxxstd=20

Generate Spack MRB area using:

Spack MRB

1/23/24 Kyle J. Knoepfel | Code development with Spack10

$ tree -L 1 .
.
├── build
├── local
└── srcs

ß Contains local Spack repository

spack mrb \
 --name art-devel \
 --top ${PWD} \
 -D srcs/ %gcc@13.2.0 cxxstd=20

$ tree -L 2
.
├── build
│ ...
├── local
│ ├── install
│ ├── packages
│ ├── repo.yaml
│ └── setup.sh
└── srcs
 ├── art
 ├── art-root-io
 ├── canvas
 ├── canvas-root-io
 ├── cetlib
 ├── cetlib-except
 ├── CMakeLists.txt
 ├── CMakePresets.json
 ├── critic
 ├── fhicl-cpp
 ├── gallery
 ├── hep-concurrency
 └── messagefacility

