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They have the highest energies
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Increase TeV–PeV
ν statistics

Discover > EeV νSynergies with lower energies

Discovered in 2013
by IceCube

Predicted in 1969
by Berezinksy



Today Next decade
TeV–PeV ν > 100-PeV ν
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ν-electron interaction

Chianese, Fiorillo, Miele, Morisi, Pisanti, JCAP 2019

Dark matter decay Sterile neutrinos

Brdar, Kopp, Wang, JCAP 2017
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Fundamental physics with high-energy cosmic neutrinos

▸ Numerous new ν physics effects grow as ~ κn · En · L

▸ So we can probe κn ~ 4 · 10-47 (E/PeV)-n (L/Gpc)-1 PeV1-n

▸ Improvement over limits using atmospheric ν: κ0 < 10-29 PeV, κ1 < 10-33
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▸ Numerous new ν physics effects grow as ~ κn · En · L

▸ So we can probe κn ~ 4 · 10-47 (E/PeV)-n (L/Gpc)-1 PeV1-n

▸ Improvement over limits using atmospheric ν: κ0 < 10-29 PeV, κ1 < 10-33

E.g.,
n = -1: neutrino decay
n = 0: CPT-odd Lorentz violation
n = +1: CPT-even Lorentz violation

10



High-energy cosmic neutrinos:
Basics and current status
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Making high-energy astrophysical neutrinos: a toy model

p + γ
target

 → Δ+ →  
n + π+,  Br = 1/3
p + π0,  Br = 2/3

π0 → γ + γ
π+ → μ+ + νμ → νμ + e+ + νe + νμ

n (escapes) → p + e- + νe 

Neutrino energy = Proton energy / 20
Gamma-ray energy = Proton energy / 10

ν

γCR

(or p + p)

12



Redshift z = 0
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Redshift z = 0

ν detection

ν propagation 
inside the Earth

HE ν

MeV γ 
TeV–PeV ν 

PeV p 
Photohadronic or pp interaction

inside the source

“High-energy”

Discovered Note: ν sources can be steady-state or transient



Strebe/Wikipedia

Baikal GVD

 TeV–PeV
ν telescopes

today



Shower
(mainly from νe and ντ) 

Track
(mainly from νμ) 

~100 m

~1 k
m

Poor angular resolution: ~10° Angular resolution: < 1°
15



Main high-energy
ν observables
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Standard expectation:
Power-law energy spectrum

Standard expectation:
Isotropy (for diffuse flux)

Standard expectation:
ν and γ from transients arrive 

simultaneously

Standard expectation:
Equal number of νe, νμ, ντ

Main high-energy
ν observables
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Key developments:
Bigger detectors → larger statistics

Better reconstruction
Smaller astrophysical uncertainties
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More: PoS ICRC2019 (1907.08690)
Argüelles, MB, Kheirandish, Palomares-Ruiz, Salvadó, VincentNote: Not an exhaustive list

Standard expectation:
Power-law energy spectrum

Standard expectation:
Isotropy (for diffuse flux)

Standard expectation:
ν and γ from transients arrive 

simultaneously

Standard expectation:
Equal number of νe, νμ, ντ

Reviews:
Ahlers, Helbing, De los Heros, EPJC 2018

Argüelles, MB, Kheirandish, Palomares-Ruiz, Salvadó, Vincent, ICRC 2019 [1907.08690]
Ackermann, Ahlers, Anchordoqui, MB, et al., Astro2020 Decadal Survey [1903.04333]



Three examples

Neutrino-matter cross section2

20

New physics via flavor3

Glashow resonance1



1. Glashow resonance:
Long-sought, finally seen
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First observation of a Glashow resonance
Predicted in 1960:

hadrons
(π, n, …)
Br ≈ 67%

IceCube, Nature 2021 
Glashow, PR 1960

First reported by IceCube in 2021: 

νe

e

W6.3 PeV

νe

e

W Br ≈ 33%
l+

l-

6.3 PeV
Monte Carlo
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2. Neutrino-matter cross section:
From TeV to EeV



Valera, MB, Glaser, JHEP 2022
Adapted for Snowmass 2021: Ackermann, MB, et al., JHEAp 2022



FCC

Bertone, Gauld, Rojo, JHEP 2019

State-of-the-art BGR18 prediction:
▸ NNLO
▸ Treatment of small-x effects
▸ PDFs informed by LHCb D-meson data
▸ Nuclear corrections
▸ Heavy-quark corrections

Softer-than-linear 
dependence on Eν 
due to the W pole

Uncertainty from extrapolating 
parton distribution functions 

(PDFs) to Bjorken x ~ mW/Eν ~10-6

Valera, MB, Glaser, JHEP 2022
Adapted for Snowmass 2021: Ackermann, MB, et al., JHEAp 2022
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IceCube
Horizon

νν

ν ν

μ

νl l

N hadrons

νN charged current scattering

νl νl
(lower energy)

N hadrons

νN neutral current scattering

Depletes the flux

Shifts flux to 
lower energies

27



Measuring the high-energy νN cross section

Hooper, PRD 2002; Hussain et al., PRL 2006; Borriello et al., PRD 2008
Hussain, Mafatia, McKay, PRD 2008 Connolly, Thorne, Waters, PRD 2011; Marfatia, McKay, Weiler, PLB 2015 28
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Valera, MB, Glaser, JHEP 2022
Adapted for Snowmass 2021: Ackermann, MB, et al., JHEAp 2022

Measured TeV–PeV 
cross section compatible 
with Standard Model 
predictions

Measurements from:
IceCube Collab., PRD 2020
MB & Connolly, PRL 2019
IceCube Collab., Nature 2017

BGR18 prediction from:
Bertone, Gauld, Rojo, JHEP 2019
See also:
García, Gauld, Heijboer, Rojo, JCAP 2020



Valera, MB, Glaser, JHEP 2022
Adapted for Snowmass 2021: Ackermann, MB, et al., JHEAp 2022
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TeV–PeV:

Earth is almost fully opaque,
some upgoing ν still make it through

IceCube

ν

ν

ν ν

ν
ν

> 100 PeV:

Earth is completely opaque,
but horizontal ν still make it through

ν
ν

31
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Redshift z = 0

ν detection

CMB/EBL γ 

EeV ν 
EeV p 

UHE cosmogenic ν

UHE source ν

Photohadronic interaction
during propagation

UHE p + nuclei

ν propagation 
inside the Earth

meV γ 
EeV ν 

EeV p 
Photohadronic or pp interaction

inside the source

“Ultra-high-
energy”

“Ultra-high-
energy”

Undiscovered Undiscovered

Note: ν sources can be steady-state or transient
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Most flux models 
discovered in Gen2

in < 5 years
Valera, MB, Glaser, PRD 2023



Valera, MB, Glaser, JHEP 2022
Adapted for Snowmass 2021: Ackermann, MB, et al., JHEAp 2022

See also: Esteban, Prohira, Beacom, PRD 2022



Valera, MB, Glaser, JHEP 2022
Adapted for Snowmass 2021: Ackermann, MB, et al., JHEAp 2022

Needed: diffuse UHE ν flux that yields 
³ tens of events in 10 years of Gen2

See also: Esteban, Prohira, Beacom, PRD 2022



New physics in the UHE νN cross section
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New physics in the UHE νN cross section
Heavy sterile neutrinos

via the dipole portal

Huang, Jana, Lindner, Rodejohann, PLB 2023 [2204.10347]
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New physics in the UHE νN cross section

Multiple ντ-induced
bangs

Huang, EPJC 2022 [2207.02222]

Heavy sterile neutrinos
via the dipole portal

Huang, Jana, Lindner, Rodejohann, PLB 2023 [2204.10347]
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New physics in the UHE νN cross section

Multiple ντ-induced
bangs

Huang, EPJC 2022 [2207.02222]

Heavy sterile neutrinos
via the dipole portal

Huang, Jana, Lindner, Rodejohann, PLB 2023 [2204.10347]

Leptoquarks,
charged Higgs, etc.

Huang, Jana, Lindner, Rodejohann, JCAP 2022 [2112.09476]

36
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Today Next decade

Turn predictions
into data-driven tests

Key developments:
Bigger detectors → larger statistics

Better reconstruction
Smaller astrophysical uncertainties

Made robust and meaningful by accounting 
for all relevant particle and astrophysics uncertainties

TeV–PeV ν > 100-PeV ν
Make predictions for
a new energy regime

Key developments:
Discovery

New detection techniques
Better UHE ν flux predictions
Similar to the evolution of cosmology to a 
high-precision field in the 1990s



3. Flavor:
Towards precision, finally

(with the help of lower-energy experiments)



Astrophysical sources Earth

Oscillations change the number

Up to a few Gpc

of ν of each flavor, Ne, Nμ, Nτ

Different production mechanisms yield different flavor ratios:
( fe,S, fμ,S, fτ,S ) ≡ (Ne,S, Nμ,S, Nτ,S )/Ntot 

Flavor ratios at Earth (α = e, μ, τ):

νμ
ντ νeνeνμ

E.g., E.g.,
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of ν of each flavor, Ne, Nμ, Nτ

Different production mechanisms yield different flavor ratios:
( fe,S, fμ,S, fτ,S ) ≡ (Ne,S, Nμ,S, Nτ,S )/Ntot 

Flavor ratios at Earth (α = e, μ, τ): Standard oscillations
or

new physics

νμ
ντ νeνeνμ

E.g., E.g.,



Sources Earth

Oscillations

νμ
ντ νeνeνμ

E.g.,

From sources to Earth: we learn what to expect when measuring 

?



One likely TeV–PeV ν production scenario:
p + γ → π+ → μ+ + νμ   followed by   μ+ → e+ + νe + νμ

Full π decay chain
(1/3:2/3:0)S

Note: ν and ν are (so far) indistinguishable 
         in neutrino telescopes
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One likely TeV–PeV ν production scenario:
p + γ → π+ → μ+ + νμ   followed by   μ+ → e+ + νe + νμ

Full π decay chain
(1/3:2/3:0)S

Muon damped
(0:1:0)S

Neutron decay
(1:0:0)S

Note: ν and ν are (so far) indistinguishable 
         in neutrino telescopes

41



Sources Earth

Oscillations

νμ
ντ νeνeνμ

E.g.,

From sources to Earth: we learn what to expect when measuring 

?

Known from oscillation 
experiments, to different 

levels of precision
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Varying over all 
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All plots shown are for normal 
neutrino mass ordering (NO); 
inverted ordering looks similar

Theoretically palatable regions: today

Song, Li, Argüelles, MB, Vincent, JCAP 2021 43



Measuring flavor composition: 2015–2020

IceCube Collab., EPJC 2022
IceCube Collab., PRD 2019
IceCube Collab., ApJ 2015
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Measuring flavor composition: 2015–2020
Based on 
real data

IceCube Collab., EPJC 2022
IceCube Collab., PRD 2019
IceCube Collab., ApJ 2015
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More: PoS ICRC2019 (1907.08690)
Argüelles, MB, Kheirandish, Palomares-Ruiz, Salvadó, VincentNote: Not an exhaustive list

Standard expectation:
Power-law energy spectrum

Standard expectation:
Isotropy (for diffuse flux)

Standard expectation:
ν and γ from transients arrive 

simultaneously

Standard expectation:
Equal number of νe, νμ, ντ
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 ▸ Active-sterile ν mixing
      [Aeikens et al., JCAP 2015; Brdar, Kopp, Wang, JCAP 2017;
      Argüelles et al., JCAP 2020; Ahlers, MB, JCAP 2021]

Brdar, Kopp, Wang, JCAP 2017
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 ▸ Non-standard interactions
      [González-García et al., Astropart. Phys. 2016; 
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 ▸ Active-sterile ν mixing
      [Aeikens et al., JCAP 2015; Brdar, Kopp, Wang, JCAP 2017;
      Argüelles et al., JCAP 2020; Ahlers, MB, JCAP 2021]

 ▸ Long-range eν interactions
      [MB & Agarwalla, PRL 2019] 

MB & Agarwalla, PRL 2019
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Lorentz-invariance violation can fill up the flavor triangle
For n = 0

(similar for n = 1)

Argüelles, Katori, Salvadó, PRL 2015
See also: Ahlers, MB, Mu, PRD 2018; Rasmusen et al., PRD 2017;  MB, Beacom, Winter PRL 2015;
               MB, Gago, Peña-Garay JCAP 2010;  Bazo, MB, Gago, Miranda IJMPA 2009; + many others

IceCube Collab., Nat. Phys. 2022



IceCube Collab., Nat. Phys. 2022
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Measuring flavor composition: 2015–2040

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Based on 
real data

Projections

49



How knowing the mixing parameters better helps

Measure θ12 better

Measure θ23 better2020 ~2030

In our results:
JUNO + Hyper-K + DUNE

Marginal improvement til 2040

NuFit 5.0

+ Hyper-K

+ JUNO

+ Hyper-K
+ JUNO

Song, Li, Argüelles, MB, Vincent, JCAP 2021 50



Coleman, Ericsson, MB, Glaser, 2401.XXXXX

51

First measurement 
forecasts of the UHE 

flavor composition in
in-ice radio detectors

(IceCube-Gen2, 10 yr)

Flavor composition at ultra-high energies



What’s next?



53
Abraham et al. (inc. MB), 
J. Phys. G: Nucl. Part. Phys. 59, 11 (2022) [2203.05591]

Many TeV–EeV
ν telescopes

in planning for 
2020–2040
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particles

HE
cosmic

particles

Colliders
(higher lum.)

Today

In 10–20 years

How?
 ▸ Event statistics (more detectors)
 ▸ Identify more sources
 ▸ New detection techniques
 ▸ Shrink particle and astro systematics

54



How it
started

10–20 years
from now

VPLATE (vplate.ru)

How it’s
going



How it
started

10–20 years
from now

VPLATE (vplate.ru)

How it’s
going

First predictions
of high-energy 

cosmic ν  



How it
started

10–20 years
from now

VPLATE (vplate.ru)

How it’s
going

First predictions
of high-energy 

cosmic ν  

PeV ν 
discovered



How it
started

10–20 years
from now

VPLATE (vplate.ru)

How it’s
going

First predictions
of high-energy 

cosmic ν  

PeV ν 
discovered

Hints of sources
First tests of ν physics



How it
started

10–20 years
from now

VPLATE (vplate.ru)

How it’s
going

First predictions
of high-energy 

cosmic ν  

PeV ν 
discovered

Hints of sources
First tests of ν physics

EeV ν discovered
Precision tests with PeV ν

First tests with EeV ν



How it
started

10–20 years
from now

VPLATE (vplate.ru)

How it’s
going

First predictions
of high-energy 

cosmic ν  

PeV ν 
discovered

Hints of sources
First tests of ν physics

EeV ν discovered
Precision tests with PeV ν

First tests with EeV ν

How do we get there?



Backup slides



Arrival directions (7.5 yr)
No significant excess in the neutrino sky map:

Milky Way sources?
They only contribute, at 
most, a few times 10% 
of the total diffuse flux IceCube, 2011.03545

Post-trial
p-value: 0.092

Galactic Center



Measuring the high-energy νN cross section

Hooper, PRD 2002; Hussain et al., PRL 2006; Borriello et al., PRD 2008
Hussain, Mafatia, McKay, PRD 2008 Connolly, Thorne, Waters, PRD 2011; Marfatia, McKay, Weiler, PLB 2015
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Neutrino flux Cross section
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Measuring the high-energy νN cross section

Hooper, PRD 2002; Hussain et al., PRL 2006; Borriello et al., PRD 2008
Hussain, Mafatia, McKay, PRD 2008 Connolly, Thorne, Waters, PRD 2011; Marfatia, McKay, Weiler, PLB 2015

Number of detected neutrinos (simplified for presentation):

Neutrino flux Cross section

Downgoing neutrinos
(L short → no matter)

Upgoing neutrinos
(L long → lots of matter)

Degeneracy Breaks the degeneracy



A feel for the in-Earth attenuation
Earth matter density

+

Neutrino-nucleon cross section
(Preliminary Reference Earth Model)
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HorizonNo 
attenuation

Full 
attenuation

MB & Connolly, PRL 2019

IceCube
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Atmospheric 
muon 

background
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Larger neutrino-nucleon cross section

Atmospheric 
muon 

background

Valera, MB, Glaser, JHEP 2022



Larger neutrino-nucleon cross section

Atmospheric 
muon 

background

Sensitivity to cross 
section comes 
from horizontal 
neutrinos

Valera, MB, Glaser, JHEP 2022
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MB & Connolly PRL 2019
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MB & Connolly PRL 2019
See also: IceCube, Nature 2017

Extending the PDG
cross-section plot



GRAND & POEMMA
Both sensitive to extensive air showers 
induced by Earth-skimming UHE ντ

Denton & Kini, PRD 2020 
GRAND:

Sensitive to radio
POEMMA:
Sensitive to 

Cherenkov & 
fluorescence

ντ regeneration

Measured to 
within 20%

If they see 100 events from ντ with initial 
energy of 109 GeV (pre-attenuation):



Flux normalization

Cross section

Needed to measure 
the cross section?
~30–300 events 

In this work: 
We fix the energy 
dependence of flux and 
cross section (but explore 
many alternatives)

Valera, MB, Glaser, JHEP 2022

Soon to come: 
Measure the energy 
dependence of the flux 
and cross section



Flavor at the Earth: theoretically palatable regions
Theoretically palatable flavor regions

≡
Allowed regions of flavor ratios at Earth derived from oscillations

MB, Beacom, Winter, PRL 2015

Note: 
The original palatable regions were 
frequentist [MB, Beacom, Winter, PRL 2015]; 
the new ones are Bayesian
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Flavor at the Earth: theoretically palatable regions
Theoretically palatable flavor regions

≡
Allowed regions of flavor ratios at Earth derived from oscillations

MB, Beacom, Winter, PRL 2015

Ingredient #2: 
Probability density of mixing 

parameters (θ12, θ23, θ13, δCP)

Ingredient #1: 
Flavor ratios at the source,

( fe,S, fμ,S, fτ,S ) 

Fix at one of the benchmarks
(pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

2020: Use χ2 profiles from 
the NuFit 5.0 global fit
(solar + atmospheric

+ reactor + accelerator)
Esteban et al., JHEP 2020

www.nu-fit.org

Post-2020: Build our own 
profiles using simulations 
of JUNO, DUNE, Hyper-K

An et al., J. Phys. G 2016
DUNE, 2002.03005

Huber, Lindner, Winter, Nucl. Phys. B 2002

Note: 
The original palatable regions were 
frequentist [MB, Beacom, Winter, PRL 2015]; 
the new ones are Bayesian



Song, Li, Argüelles, MB, Vincent, JCAP 2021

vs.

No unitarity?  No problem



How knowing the mixing parameters better helps

Measure θ12 better

Measure θ23 better

(δCP less important)

(θ13 effect is tiny)



Unstable neutrinos:
Are neutrinos for ever?



Are neutrinos forever?

▸ In the Standard Model (νSM), neutrinos are essentially stable (τ > 1036 yr):
   ▸ One-photon decay (νi → νj + γ): τ > 1036 (mi/eV)-5 yr
   ▸ Two-photon decay (νi → νj + γ + γ): τ > 1057 (mi/eV)-9 yr
   ▸ Three-neutrino decay (νi → νj + νk + νk): τ > 1055 (mi/eV)-5 yr

▸ BSM decays may have significantly higher rates: νi → νj + φ

▸ We work in a model-independent way:
   the nature of φ is unimportant if it is invisible to neutrino detectors 

» Age of Universe
   (~ 14.5 Gyr)
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▸ In the Standard Model (νSM), neutrinos are essentially stable (τ > 1036 yr):
   ▸ One-photon decay (νi → νj + γ): τ > 1036 (mi/eV)-5 yr
   ▸ Two-photon decay (νi → νj + γ + γ): τ > 1057 (mi/eV)-9 yr
   ▸ Three-neutrino decay (νi → νj + νk + νk): τ > 1055 (mi/eV)-5 yr

▸ BSM decays may have significantly higher rates: νi → νj + φ

▸ We work in a model-independent way:
   the nature of φ is unimportant if it is invisible to neutrino detectors 

» Age of Universe
   (~ 14.5 Gyr)

Nambu-Goldstone 
boson of a broken 
symmetry

58



Astrophysical sources Earth

Decay changes the number

L ~ up to a few Gpc

of each ν mass eigenstate, N1, N2, N3

E.g.,

The flux of νi is attenuated by exp[- (L/E) · (mi/τi)]
Mass of νi Lifetime of νi 

ν2

ν3 ν1 ?
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Astrophysical sources Earth

Decay changes the number

L ~ up to a few Gpc

of each ν mass eigenstate, N1, N2, N3

E.g.,

ν2

ν3 ν1 ?

The flux of νi is attenuated by exp[- (L/E) · (mi/τi)]

Lower-E ν are longer-lived… 

… but ν that travel longer L are more attenuated!
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Astrophysical sources Earth
L ~ up to a few Gpc
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Fine print:
▸ Decay can be incomplete
▸ Final-state ν might be detectable or not
▸ Many more possible decay channels
   (see Winter & Mehta, JCAP 2011)
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E.g.,

ν2

ν3 ν1

Fine print:
▸ Decay can be incomplete
▸ Final-state ν might be detectable or not
▸ Many more possible decay channels
   (see Winter & Mehta, JCAP 2011)

ν3

ν
1
, ν

2
 → ν

3

ν3 
lightest and stable

(inverted mass ordering)

ν1

ν
2
, ν

3
 → ν

1

ν
1 
lightest and stable

(normal mass ordering)

(If decay is complete)What does decay change?
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

|Uαi|2 =|Uαi(θ12, θ23, θ13, δCP
)|2

MB, Beacom, Winter PRL 2015

Known to within 8%

Known to within 2%

Known to within 20%
(or worse)

Flavor content of mass eigenstates:

62



What does neutrino decay change?
Flavor composition Spectrum shape Event rate

E.g.,
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lightest and stable

(inverted mass ordering)
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 → ν
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ν
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lightest and stable
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 /Abdullahi & Denton, PRD 2020 /
                MB, 2004.06844
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Flavor composition Spectrum shape Event rate

Approx. today
(IceCube 2015

combined analysis,
ApJ 2015)

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 /
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Flavor composition Spectrum shape Event rate

Approx. today
(IceCube 2015

combined analysis,
ApJ 2015)

Complete decay into
ν1 disfavored by 2015 
IceCube flavor measurement

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 /Abdullahi & Denton, PRD 2020 /
                MB, 2004.06844
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Lower limit on τ/m 
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

Song, Li, Argüelles, MB, Vincent, JCAP 2021

Approx. today

Make your own fit: github.com/songningqiang/FANFIC

Approx. today

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 /Abdullahi & Denton, PRD 2020 /
                MB, 2004.06844

Two ingredients:
Distribution mixing parameters

& IceCube flavor posterior
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

MB, Beacom, Murase, PRD 2017

ν
2
, ν

3
 → ν

1

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 /
                Abdullahi & Denton, PRD 2020 / MB, 2004.06844 /
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

High energy: no decay

Low energy: decay evident

Transition region

Look for sigmoid-like 
transition in spectrum: 
challenging, but possible 

with more statistics!
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

MB, 2004.06844
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See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
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                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

Glashow resonance (GR):
νe + e → W → hadrons → shower 

MB, 2004.06844
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

Glashow resonance (GR):
νe + e → W → hadrons → shower 

IceCube has seen one GR candidate in 4.6 years:

IceCube Collab., Nature 2021

MB, 2004.06844
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

Glashow resonance (GR):
νe + e → W → hadrons → shower 

ν1 is the mass eigenstate with the most e flavor

MB, 2004.06844
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

If ν1 had decayed en route to Earth, 
there would not have been νe left to trigger a GR 

Glashow resonance (GR):
νe + e → W → hadrons → shower 

MB, 2004.06844
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

If ν1 had decayed en route to Earth, 
there would not have been νe left to trigger a GR 

Glashow resonance (GR):
νe + e → W → hadrons → shower 

MB, 2004.06844

So by having observed 1 GR event we can 
place a lower limit on the lifetime of ν1 (= ν1)
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

MB, 2004.06844
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Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

Free parameters:
ν1, ν2 lifetimes

Mix. par.
Flavor ratios

ν/ν ratio

MB, 2004.06844
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

Free parameters:
ν1, ν2 lifetimes

Mix. par.
Flavor ratios

ν/ν ratio

τ1/m1 > 2.91 × 10-3 s eV-1 (90% C.L.)
τ2/m2 > 1.26 × 10-3 s eV-1 (90% C.L.)

MB, 2004.06844
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What does neutrino decay change?
Flavor composition Spectrum shape Event rate

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / 
                MB, Beacom, Murase, PRD 2017/ Rasmussen et al., PRD 2017 /
                Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / 
                Song, Li, Argüelles, MB, Vincent, JCAP 2020

Free parameters:
ν1, ν2 lifetimes

Mix. par.
Flavor ratios

ν/ν ratio

Limit for ν2

Limit for ν1

τ1/m1 > 2.91 × 10-3 s eV-1 (90% C.L.)
τ2/m2 > 1.26 × 10-3 s eV-1 (90% C.L.)

MB, 2004.06844
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New neutrino interactions:
Are there secret νν interactions?



Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance
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Astrophysical neutrino sources Earth

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream
(And oscillate) 

Non-standard case: high-energy ν scatter of CνB

“Secret” ν 
interactions

≡
BSM ν self-
interactions

Astro

Relic

Can change:
 ▸ Energy spectrum
▸ Flavor composition
▸ Direction
▸ Arrival times
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Secret interactions of high-energy astrophysical neutrinos
“Secret” neutrino interactions between 
astrophysical ν (PeV) and relic ν (0.1 meV):

Cross section:

Resonance energy:

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020
See also: Esteban, Pandey, Brdar, Beacom, PRD 2021
                Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021 
                Ng & Beacom, PRD 2014
                Cherry, Friedland, Shoemaker, 1411.1071
                Blum, Hook, Murase, 1408.3799

M = 10 MeV
g = 0.03
mν = 0.1 eV

Astro

Relic
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Secret interactions of high-energy astrophysical neutrinos
“Secret” neutrino interactions between 
astrophysical ν (PeV) and relic ν (0.1 meV):

Cross section:

Resonance energy:

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020
See also: Esteban, Pandey, Brdar, Beacom, PRD 2021
                Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021 
                Ng & Beacom, PRD 2014
                Cherry, Friedland, Shoemaker, 1411.1071
                Blum, Hook, Murase, 1408.3799

Mediator mass

New coupling

M = 10 MeV
g = 0.03
mν = 0.1 eV

Eres = 500 TeV

Astro

Relic
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“Secret” neutrino interactions between 
astrophysical ν (PeV) and relic ν (0.1 meV):

Cross section:

Resonance energy:

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020
See also: Esteban, Pandey, Brdar, Beacom, PRD 2021
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Secret interactions of high-energy astrophysical neutrinos
“Secret” neutrino interactions between 
astrophysical ν (PeV) and relic ν (0.1 meV):

Cross section:

Resonance energy:

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020
See also: Esteban, Pandey, Brdar, Beacom, PRD 2021
                Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021 
                Ng & Beacom, PRD 2014
                Cherry, Friedland, Shoemaker, 1411.1071
                Blum, Hook, Murase, 1408.3799

Mediator mass

New coupling

Astro

Relic

Looking for evidence of νSI

 ▸ Look for dips in 6 years of 
    public IceCube data (HESE)

 ▸ 80 events, 18 TeV–2 PeV

 ▸ Bayesian analysis varying
    M, g, shape of emitted flux (γ)

 ▸ Assume flavor-diagonal and 
   universal: gαα = g δαα 

 ▸ Account for atmospheric ν, 
    in-Earth propagation, detector   
    uncertainties
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MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 
See also: Shalgar, MB, Tamborra, PRD 2020

No significant (> 3σ) evidence for a spectral dip …  
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MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 
See also: Shalgar, MB, Tamborra, PRD 2020

No significant (> 3σ) evidence for a spectral dip …  … so we set upper limits on the coupling g

(90% C.L.)
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MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 
See also: Shalgar, MB, Tamborra, PRD 2020

No significant (> 3σ) evidence for a spectral dip …  … so we set upper limits on the coupling g

(90% C.L.)

The 300 TeV–1 PeV “gap” 
degrades the limit at ~10 MeV 68



Flavor composition:
Beyond basics



Flavor composition: measuring the energy dependence

Liu, Fiorillo, Argüelles, MB, Song, Vincent, 2312.07649

Power-law (PL) diffuse ν flux

Low-energy (LE)
(1:2:0)S

High-energy (HE)
(0:1:0)S

Future
(HESE & thru. μ

in IceCube + Gen2
+ Baikal-GVD + KM3NeT 

+ P-ONE + TAMBO
+ TRIDENT)

35



Real, public data









Telalovic, MB, 2310.15224
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Telalovic, MB, 2310.15224



Telalovic, MB, 2310.15224



High νe content:
Production by neutron decay

High νμ content:
Muon-damped

About the same for all flavors:
Production by full pion decay chain
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