↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ₽,

Receiver

MAD MAX update and plans

Béla Majorovits on behalf of the

MADMAX:

a dielectric haloscope for discovering dark matter axions

- Magnet status
- Closed and open booster Prototypes
- Latest measurement campaigns
- MADMAX FNAL solenoid

MADMAX: a dielectric haloscope

Dark Wave Lab Workshop, Fermilab, 2024, April15-16

MAD MAX: MAgnetized disk and Mirror Axion eXperiment

MADMAX goal: DFSZ sensitivity at 10 – 100 GHz Magnet: 100 T²m² Boost factor > 10.000 T_{sys} ~ 10 K Tunable disc distances

BILFINGER

MACQU test solenoid

Dark Wave Lab Workshop, Fermilab, 2024, April15-16

MADMAX magnet status

- Design study within innovation partnership finished:
 - \rightarrow 9.1 T dipole with 1.35 m warm bore feasible
- First important R&D results
 - Conductor based on CICC can be produced: Suppliers for conductor available

All results in special MADMAX issue IEEE Transactions on Applied Superconductivity, 33(7):1–11, 2023.

cea

- Copper yield strength ok after compaction
- Quench protection feasible (propagation velocity)
- Cooling concept of conductor

MAD MAX path forward

5

Test and understand conductor production, bending, impregnation...
→ Verify production sequence

Path forward: Design, build and test demonstrator coils

- Stick slip heat deposition
- Extraction of heat after stick slip
- Develop conductor termination
- → Mitigate underperformance risk

MAD MAX closed and open prototypes

Closed Booster with 100mm and 200mm diameter Well defined boundary conditions Not tunable by motors Understand boost factor determination using

reflectivity: CB100 & CB200

Both used inside MORPURGO magnet at CERN

Open Booster with 200mm and 300mm diameter: Ideally "absorbing" boundary conditions **Tunable in frequency by motors** Determination of boost factor by "bead pull" method & mechanical test

OB200 used for **mechanical qualification** in B-field & cryo Used "static" open booster to perform hidden photon meas **OB300** to be used in special cryostat at CERN - MORPURGO

OB200 (1 disc)

MAD MAX closed and open prototypes

Closed Booster with 100m and 200mm diameter Well defined boundary conditions Not tunable by motors Understand boost factor determination using reflectivity: CB100 & CB200

Both used inside MORPURGO magnet at CERN

CB200 At CERN (3 discs)

Dark Wave Lab Workshop, Fermilab, 2024, April15-16

Open Booster with 200mm and 300mm diameter: Ideally "absorbing" boundary conditions **Tunable in frequency by motors** Determination of boost factor by "bead pull" method & mechanical test

OB200 used for **mechanical qualification** in B-field & cryo Used "static" open booster to perform hidden photon meas **OB300** to be used in special cryostat at CERN - MORPURGO

OB300 Initially 3 discs (2025) Up to 20 discs possible

3 disc "static" open booster system

Determination of boost factor by bead pull adaptation of BREAD DAQ for MADMAX ~ 10 days data taking inside SHELL laboratory

Determination of boost factor by bead pull → Competitive hidden photon limits

CB200 at CERN at 1.0 – 1.6 T

At room temperature Different frequencies

Dark Wave Lab Workshop, Fermilab, 2024, April15-16

CB100 inside MORPURGO at 1.6 T

Inside cryostat at < 10K → Cold calibration!

CB200 at CERN

CB100 inside MORPURGO

Room temperature, Different frequencies

Dark Wave Lab Workshop, Fermilab, 2024, April15-16

Data analysis ongoing.
 Expect DM ALP limits at 7 10
 MHz frequency intervals at
 3-6*10⁻¹¹GeV⁻¹

in cryostat at < 10K → Cold calibration!

NORPURGO

MAD MAX future plans at CERN with OB300

OB300 in MPC in MORPURGO 1.6 T → Applying for 9 months measurement time during long shut-down 2026 (2027,2028) → Scan 1.5 GHz at 10⁻¹² GeV⁻¹ level

How to use MRI magnet: existing prototypes: CB100 – CB200

CB200 easily fits 80cm bore at room temperature Increase #discs Power boost factor ~10.000 Sensitivity around: 10⁻¹² GeV⁻¹

Some tuning possible

Remember: B-field parallel to discs!

How to use MRI magnet: existing prototypes: CB100 – CB200

CB100 should fit cryostat Increase #discs Power boost factor ~5.000 Sensitivity around: 10⁻¹² GeV⁻¹ after 1 week

How to use MRI magnet: existing prototypes: CB100 – CB200

Potentially test baseline design technology at nominal B-field & temperature

CONCLUSIONS:

Lots of MADMAX progress:

- Magnet R&D ongoing
- Boost factor determination via measurement & simulation
- Performed ALPs measurement at CERN
- Tunable open booster in cryostat to come
- 9.4 T MRI magnet at FNAL is opportunity for MADMAX