ADMX-Orpheus: a Tunable 16 GHz Cavity for Axion Searches-

Jimmy Sinnis Dark Wave Lab Workshop 04/15/2024 ¹

Overview of this talk

- How Orpheus searches higher frequencies
- Some technical details
- Current status and future work
- Points of improvement with existing technology

Axion haloscopes – ADMX

- Requirements to produce a signal:
	- Magnetic or electric field
	- Resonant structure
- Requirements to measure the signal:
	- Low temperatures
	- Coupling to resonator
- Innate constraints of conventional design:
	- Insensitive to higher-order modes
	- Smaller volumes for higher frequencies

Effective volume decreases in higher frequency cavity modes.

Design task: maintain large V_{eff} in a tunable cavity at higher frequencies

Design: Fabry-Perot Interferometers

- Standing waves between two mirrors
- We use the 18th order mode

Design: Fabry-Perot interferometers

Fabry-Perot interferometers solutions:

$$
u_{mn} = \frac{w_0}{w} \left[H_m\left(\sqrt{2} \frac{x}{w}\right) H_y\left(\sqrt{2} \frac{y}{w}\right) \exp\left(\frac{-\rho^2}{w^2}\right) \right] \exp\left(-i(kz - \varphi) - \frac{ik\rho^2}{2r}\right)
$$

The mode we search with has the form of a slightly modified sine wave:

$$
u_{00} = \frac{w_0}{w} \exp\left(\frac{-\rho^2}{w^2}\right) \exp\left(-i(kz - \phi) - \frac{ik\rho^2}{2r}\right)
$$

Design: Fabry-Perot interferometers

● Fabry-Perot interferometers solutions:

• The mode we search with has the form of a slightly modified sine wave:

$$
u_{00} = \frac{w_0}{w} \exp\left(\frac{-\rho^2}{w^2}\right) \exp\left(-i(kz - \phi) - \frac{ik\rho^2}{2r}\right)
$$

Apply a magnetic field and add dielectrics to couple axions to higher-order modes

Simulations of the cavity

● 20 times the effective volume of traditional resonant cavity design at this frequency.

13

RF characterization of the real cavity

- Most losses are due to diffraction rather than ohmic losses
- We couple to the cavity with apertures in both mirrors

Tuning mechanism

- Three stepper motors control:
	- 1. Curved mirror position
	- 2. Top dielectric plate position
	- 3. Bottom dielectric plate position
- The flat mirror is fixed and the spacing of the plates is regulated by scissor jacks
- steel and g-10 rods couple to the moving parts of the cavity
- We have tuned when the insert was cooled to 4K

Magnet design: dipole racetrack magnet

- Two sided
- Expected field is roughly 0.8-0.9 Tesla
- Wound and potted by hand at CENPA

LHe dark photon data run

Current and future work

- We are preparing to test the magnet
	- Adding Orpheus to the ADMX helium recovery system
- Simulations to improve effective volume and avoid the mode crossing
- If the magnet works, an axion data run will follow

Ways to improve Orpheus with existing technology

- A stronger and larger dipole magnet
- A larger resonator
	- This increases both volume and Q
- A dilution fridge
- More dielectric plates
- A quantum amplifier

Backup slides

empty resonator dielectrics added

RF characterization of the Orpheus resonator:

Magnetic field simulation

Cavity coupling coefficient – the flat part is a safe guess due to poor fitting

29

Top View

Side View

Bottom View

Haloscope detection scheme:

 $w^2 = w_0^2[1 + (z^2/z_0^2)]$

 $r = z[1 + (z_0^2/z^2)]$

 $z_0 = k w_0^2/2$

Orpheus uses dielectrics to couple axions to higher-order modes.

- Open resonator with dielectric plates
- 20 times the effective volume of traditional resonant cavity design at this frequency.

Magnetic field simulation

