

Searching for Axions and Dark Photons with SNSPDs in the BREAD experiment

Christina Wang (Caltech) on behalf of the BREAD collaboration

2024 Dark Wave Lab Workshop 04/16/2024

Fermilab

High Mass Axions are Unexplored

BREAD: Broadband Reflector Experiment for Axion Detection

- Axion-induced EM field causes discontinuity at conducting surfaces
- To satisfy the $E_{\parallel} = 0$ boundary condition, an additional EM wave emitted \perp to the surface
 - Emitted photon energy equals DM mass
 - For dark photon converts to photons without the need of B field

BREAD Detector Concept

Cylindrical surface is convenient for solenoidal B field

BREAD Detector Concept

- Cylindrical surface is convenient for solenoidal B field
- A parabolic mirror focuses the photons to a vertex

Superconducting Nanowire Single Photon Detector (SNSPD)

- **Detection Mechanism:**
 - Operating at 1-4 K
 - Incident single photon triggers detector out of superconducting state
 - Resistance quickly (ps) jumps to few $k\Omega$ \rightarrow bias current into readout

- SNSPDs satisfy the photosensor requirements for **BREAD**:
 - Broad spectral response: ultraviolet to near infrared \bullet \rightarrow sensitive to 0.1 - 1 eV dark photon/axions mass
 - Low noise: $DCR < 10^{-3} Hz$
 - mm²-size active area

Pilot Experiment with SNSPDs

- Currently planning for pilot dark photon search with SNSPD (doesn't need external B field) at Fermilab
- SNSPD provides unique sensitivity for 0.1 1 eV dark photon mass
- We can already explore previously unconstrained regions by running the pilot experiment with 1 day,

R = 20 cm

Status of the Pilot Bread Experiment – SNSPD Characterization

- Characterizing 8-channel mm² SNSPDs developed by collaborators at JPL
- The sensors are mounted in an Adiabatic Demagnetization Refrigerator (ADR) cryostat at Fermilab
- Measured saturated internal detection efficiency and DCR of 1e-3 cps
 - Working with JPL to develop new SNSPD in new dark box with higher efficiency and lower dark count
- Developing system to measure calibrated efficiency to prepare for the pilot dark photon experiment

mm² SNSPD on ADR cold finger

10⁻²

Status of the Pilot Bread Experiment – Reflector & Integration

- At optical wavelengths, need best possible focusing to limit size of photosensor.
- Reflector fabricated with diamond turning to achieve µm-level precision and smoothness
 - Top segment of the reflector diamond turned at LLNL and tested at FNAL
 - 90% optical efficiency and 25 nm roughness achieved within specification
- Plan to mount the setup in a dilution fridge in SQMS, working with engineers for optimized thermal and mechanical solution

Measuring focal spot dispersion with laser

Large-Scale Bread Experiment for Axions

SNSPD provides unique sensitivity for 0.1 - 1 eV axion masses

Vision: Large-Scale BREAD

larger-scale version (A ~ 4 m²) as side-experiment to ADMX-EFR

InfraBread for Axions

- **Require sub-Kelvin cryostat and related infrastructure in the Dark Wave Lab**
- **R&D** needed to operate SNSPD in magnetic field
 - Require sensor development & characterization inside strong B field
- - Performing simulation study to guide photons to outside of the magnet

Alternatively, guide the signal photons to lower or zero B field regions for detection

Paraboloid to Winston Cone setup to guide the photons outside of the solenoid

Future SNSPD Improvements: Lowering the Energy Threshold

- To further improve the reach to lighter mass \rightarrow lowering the energy threshold
- Increasing silicon concentration in WSi \rightarrow lower energy threshold
- Recent demonstration of SNSPD can detect photons up to $29\mu m / 0.04 eV$

https://arxiv.org/pdf/2308.15631.pdf

Summary

- Presented current progress of the pilot BREAD experiment using SNSPDs that can set best limit for 0.1-1 eV dark photon
 - Developing system to measure SNSPD calibrated efficiency, fabricating and characterizing reflector, and integrating the system to SQMS fridge
- Access to sub-K cryostat and magnet in the Dark Wave Lab is essential to the next large-scale BREAD experiment for axions

b

Backup Slides

SNSPD in Magnetic Field

 Signal efficiency is mostly similar in different B field, while dark count rate increases significantly

InfraBREAD Dish Requirements

- At optical wavelengths, need best possible focusing to limit size of photosensor.
- Dark matter velocity dispersion limits focal spot to ~ 1 mm for a meter scale device.
- Reflector surface deviations need to be controlled at few micron level.
- Achievable by industry standard optical machining process (single point diamond turning) on various substrates (e.g. aluminum)

Measuring focal spot dispersion with laser7

Background Rate Measurement

- Measured the DCR with shielding at every stage \rightarrow < 1e-3 cps

Working on new dark box for SNSPD to further reduce the noise floor in DCR

Photon Count Rate & Dark Count Rate

 Internal detection efficiency saturated for both 635 and 1060 nm Saturation occurs at a lower bias current for higher photon energy

Velocity Effect

For Dish Antenna:

By requiring $E_{\parallel} = 0$ and energy conservation, photon wave vector can be calculated

outgoing angle $\theta \approx v \sim 10^{-3}$

[Jaeckel, Redondo arXiv:1307.7181]

InfraBREAD: Velocity Effects

1mm² SNSPD captures 45-75% of signal

Dark photon signal: $P_{A'} = 2.2 \times 10^{-23} \text{W} \frac{\alpha_{pol}^2}{2/3} (\frac{\kappa}{10^{-14}})^2$ Axion signal:

$$P_a = 8.8 \times 10^{-23} \text{W} \left(\frac{g_{a\gamma\gamma}}{10^{-11} \text{GeV}^{-1}} \frac{\text{meV}}{m_a}\right)^2 \left(\frac{B}{10T}\right)^2 \frac{\rho_{DM}}{0.45 \text{GeV/cm}^3} \frac{A_{dish}}{10\text{m}^2}$$

$$\begin{cases} \left(\frac{g_{a\gamma\gamma}}{10^{-12}}\right)^{2} \\ \left(\frac{\kappa}{10^{-15}}\right)^{2} \end{cases} = \begin{cases} \frac{3.0}{\text{GeV}^{2}} \left(\frac{m_{a}}{\text{meV}}\right)^{3} \left(\frac{10 \text{ T}}{B_{\text{ext}}}\right)^{2} \\ 11.9 \frac{2/3}{\alpha_{\text{pol}}^{2}} \frac{m_{A'}}{\text{meV}} \end{cases} \end{cases} \begin{cases} \frac{10 \text{ m}}{\Delta t} \right)^{1/2} \\ \frac{10 \text{ m}^{2}}{A_{\text{dish}}} \frac{Z}{5} \frac{0.5}{\epsilon_{s}} \left(\frac{\text{DCR}}{10^{-2} \text{ Hz}}\right)^{1/2} \frac{0.45 \text{ GeV/cm}^{3}}{\rho_{\text{DM}}}. \end{cases}$$
(11)

$$\frac{1}{4})^2 \frac{\rho_{DM}}{0.45 \text{GeV/cm}^3} \frac{A_{dish}}{10 \text{m}^2}$$

BREAD program

BREADPAxion a
Dark photon A'Experimental paran A_{dish} [m²]
 B_{ext} [T] A_{dish} [m²]
 ϵ_s Δt [days]
NEP [W Hz^{-1/2}] 10NEP [W Hz^{-1/2}] 10Coupling sensitivity

$$egin{array}{l} |g_{a\gamma\gamma}/g_{a\gamma\gamma}^{
m KSVZ} | g_{a\gamma\gamma}/g_{a\gamma\gamma}^{
m DFSZ} | g_{a\gamma\gamma}/g_{a\gamma\gamma}^{
m DFSZ} \kappa/10^{-14} \end{array}$$

8

Pilot	Stage 1	Stage 2a	Stage 2b
	\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark
meters			
0.7	10	10	10
	10	10	10
0.5	0.5	0.5	0.5
10	10	1000	1000
0^{-14}	10^{-18}	10^{-20}	10^{-22}
y (SNR = 5)			
	280	9.0	0.90
	740	23	2.3
3400	22	0.7	0.07

Thermal Photon Background

