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• Extensive experience with cryogenic systems 

• 3, 7 and 12 T superconducting magnets 

• Large collection of microwave (and a some 
optical) diagnostic equipment and hardware 

• Expertise with precision frequency metrology
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Scalar Field Dark Matter Axions with Magnetic Charge

RECENT PUBLICATIONS

DETECTOR COMPARISON: Defining Instrument 
Sensitivity independent of signal (Spectral)

Axion ED Poynting 
Theorem:  
Standardised way of 
Calculating Sensitivity
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Reactive Experiment with Static Background Electric and Magnetic Field -> 
Imaginary Part of Complex Poynting Theorem

arXiv:2306.13320 [hep-ph]
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The axion field is strongly repelled by electric charges due to the infinite potential barrier


Willy Fischler and John Preskill. DYON - AXION DYNAMICS. Phys. Lett. B, 125:165–170, 1983
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gaEMãE0 ̂z
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gaEM ≡ gϕγγ

SCALAR DARK MATTER: ELECTROMAGNETIC TECHNIQUES
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18 days of continuous data taking 
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Twisted “anyon” microwave cavities
Why is it called an “anyon” cavity?

ℋp =
2 Im[ ∫ Bp( ⃗r ) ⋅ E*p ( ⃗r ) dτ]

∫ Ep( ⃗r ) ⋅ E*p ( ⃗r ) dτ ∫ Bp( ⃗r ) ⋅ B*p ( ⃗r ) dτ
∼ 0

HOWEVER: For Both Cavities
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Anyon Cavity

2p symmetries: p rotational + p reflection 
Rotation by 2π/p preserves the object
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2p symmetries: p rotational + p reflection 
Rotation by 2π/p preserves the object

Anyon

x
y

v

x
yz

a b

R

v
1

2 3

✓

l

3l

x
y z

ψn = eiθψn+1

Z ∈ ± ℤ

x
y

v

x
yz

a b

R

v
1

2 3

✓

l

3l

x
y z

ψn = eiθψn+1

θ = (2π/p)Z

θ ∈ ℝ

Torus

ψn
ψn+1

ψn = ψn+1
ψn = ψn+N

Boson

θ = 0

S1 S2

Möbius

ψn
ψn+1

ψn = − ψn+1
ψn = ψn+2N

Fermion

θ = ± π

S1
S2

D3 D4 D5 D6

Dihedral group of regular convex polygons: Dp

S1

S2

S3



Twisted “anyon” microwave cavities

• 3D printed 

• Measured mode frequencies 
to confirm simulation results

ℋp =
2 Im [ ∫ Bp( ⃗r ) ⋅ E*p ( ⃗r )dτ]

∫ Ep( ⃗r ) ⋅ E*p ( ⃗r )dτ ∫ Bp( ⃗r ) ⋅ B*p ( ⃗r )dτ



Cause of Helicity

ℋ = 0

ℋ ≠ 0
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Transverse Magnetic (TM) Transverse Electric (TE)

23

TE & TM modes 
degenerate in frequency
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Mode Splitting
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Cross-section 

• Triangular cross-section shows 
greatest helicity (order unity)
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COMSOL
• Helicity is calculated via finite element 

analysis

• With twist 
• Eigenmodes tune in frequency 
• Helicity increases 

• Confirm theoretical predictions 



3D Printed Triangular Waveguide Cavities
60120

240

• Discrete angles 
• 3D printed aluminum
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Simulation and Experimental Results Agree
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Helicity

Cavity frequency (1 GHz)

Q factor

Measurement time
(1 week)

Amplitude noise (-160 dBcHz-1)

Microwave
Probe

CouplingAxion Photon
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Axion Frequency
Cold dark matter density 

(8×10−22kgm-3)

Speed of light 
(3x108 ms-1)
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Dark matter detection in a single mode thanks to helicity
Twisted “anyon” microwave cavities



Dark matter detection in a single mode thanks to helicity

• Accesses an axion mass range very difficult 
to search
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Dark matter detection in a single mode thanks to helicity

• Accesses an axion mass range very difficult 
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• No external magnetic field needed

• Ability to use superconducting materials
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Dark matter detection in a single mode thanks to helicity

• Accesses an axion mass range very difficult 
to search

• No external magnetic field needed

• Ability to use superconducting materials

• Allows high Q-factors and improved 
sensitivity

Twisted “anyon” microwave cavities
https://cajohare.github.io/A

xionLim
its/

arX
iv:2208.01640v2

10-22 10-21 10-20 10-19 10-18 10-17 10-16 10-15 10-14 10-13 10-1210-19
10-18
10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10

μHz mHz Hz

Axion Mass (eV)

g a
γγ

(G
eV

-1
)

CAST
SN1987Aɣ

CMB Qp = 107

Qp = 109

Qp = 1011

Qp = 1013



Dark matter detection in a single mode thanks to helicity

• Accesses an axion mass range very difficult 
to search

• No external magnetic field needed

• Ability to use superconducting materials

• Allows high Q-factors and improved 
sensitivity

• Next: Optimising Q-factors and minimising 
read-out amplitude modulation noise for a 
detection run
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