Possibility of superconducting qubits in a strong magnetic field

April 15, 2024 The University of Tokyo / ICEPP Tatsumi Nitta

Dark Wave Lab Workshop at Fermilab

Why superconducting qubits?

Superconducting Quantum Computer

Large electric coupling $O(10^6) \times \text{atom}$

Fast drive & long coherence O(10) ns & $T_1 > O(100) \ \mu s$

non-demolition readout

Designable circuit

Low noise environment

Superconducting qubit is a wonderful playground for HEP

Quantum sensor

High sensitivity to weak EM field

Fast measurement & complex operation

Low stat. uncertainty

Circuit for physics

Low dark count

Superconducting Qubits

resonator is weakly coupled with qubit

Physical design (3D Resonator)

Josephson Junciton

Quantum hardware team in ICEPP Japan

Shion Chen \rightarrow Move to Kyoto soon

Toshiaki Inada

Karin Watanabe

Kan Nakazono

Tatsumi Nitta

Kirill Shulga

- Superconducting qubit fabrication
- DM searches using qubits
- QC related R&Ds (IBM sponsored research)
- High-freq. gravitational wave search (w/ FNAL/KEK)
- Analogue blackhole emulation using SQUID arrays

Activities: Qubit Fabrication

Spin echo : T_2^{echo} =3.061us Normalized raw data 🛨 fit dat -0.000325-0.00112 Omega_fit=18.320 1£3/x.u. tau_fit=249678569.108 x.u. pi=23.644, pi2=9.998 -0.000330-0.00114 $T_1 \sim 10 \ \mu s$ ₹ -0.000335 ∽ -0.00116 $T_2^e \sim 3 \ \mu s$ -0.000340-0.00118data -0.00120 2000 8000 best-fit Delay time [ns] Decent performance!

Activities: Dark wave searches

Qubit excitation with dark photons

DP can excite qubit directly

S. Chen et.al. Phys. Rev. Lett. 131, 211001

Wideband sensitivity

Entanglement enhances sensitivity

arxiv: 2311.10413

Multiple qubits entanglement enhances signal $P_{sig} \propto N_{qubits}^2$!

Worth putting qubit in B-field?

Yes! Many applications...

- Dark photon searches -> Axion searches !
 with JPA/TWPA without zero-field reagion
 - with single photon counter / direct detection
- Other JJ based quantum device (JPC as switch etc)
- Condensed matter application like <u>quantum spin liquid</u> in α RuCl₃
- Readout of the other quantum system (<u>NV-center</u>, <u>Magnons</u>)

Does qubit survive in B-field?

No, but some ideas...

Use high T_C materials

Nature Commun Mater 2, 98 (2021)

Avoiding penetrating thin films

Applying B-field along with thin film

Similar situation in YBCO cavity at CAPP NbTi cavity at INFN

Thin fim ~ 100 nm Cross section is extremely low

Highest Magnetic Field Ever Applied

Phys. Rev. Applied 17, 034032

AI-AIOx-AI Junction has 1 Tesla tolerance

Future Plans / Possibilities

- 1. Test qubit in ~ 3 Tesla -> Now ongoing
- 2. Sneak in the 9.4 T magnet at FNAL? Our setup is very small: 1 inch diameter, less than 2 inches length
- 3. Test dedicated design for escaping magnetic flux

4. Test fancy material for higher tolerance

14

Summary

- Superconducting qubits have many application to HEP -
- Qubit in a strong magnetic field opens various possibilities

- Qubit is proved working under 1 Tesla
 - \rightarrow We are now expanding it towards ~10 Tesla
- There are several options to make it more B-field tolerant

Especially, axion searches with extreme sensitivity

