Massively Multiplexed Dark Matter Searches with Integrated Photonics

Ryan Janish

(Fermilab)

[Nikita Blinov, Christina Gao, Roni Harnik, RJ, Neil Sinclair, 2401.17260]

E Pluribus Unum

DM Power from many resonators: $P \sim \frac{Q}{m} J_{\rm dm}^2 |\eta|^2 VN$

E Pluribus Unum

DM Power from many resonators: $P \sim \frac{Q}{m} J_{\rm dm}^2 |\eta|^2 VN$

RF multi-cavity searches $(m \lesssim 35 \, \mu \mathrm{eV})$

ADMX-G2

4 cavity array

ADMX-EFR

18 cavity array

RADES

Linear multicell

CAPP Pizza

Radial multicell

[Adams et al 2203.14923]

[Melcon et al 2002.07639]

[Jeong et al 2205.01319]

Photonic Micro-resonator Arrays

 $N \sim \left(\frac{10 \,\mathrm{cm}}{100 \,\mu\mathrm{m}}\right)^2 \sim 10^6$

[Zhang et al 1712.04479]

Phase Matching

or Momentum Conservation or Mode Overlap or ...

Periodic microring

Photonic crystal resonator

[Fan and Joannopoulos, 2002]

[Image: Nikita Blinov]

$$|\eta| \sim 0.1$$

$$|\eta| \sim 0.01$$

Power Combining

[Heebner et al, '08]

$$P_{\text{signal}} \leq NP_0$$

$$P_0 = \frac{Q}{m} J_{\rm dm}^2 |\eta|^2 V$$

Power Combining

[Heebner et al, '08]

$$P_{\text{signal}} \le NP_0$$

$$P_0 = \frac{Q}{m} J_{\text{dm}}^2 |\eta|^2 V \Longrightarrow$$

Individual resonator:

$$P_{\text{drive}} \sim E J_{\text{dm}} V$$

$$P_{\text{loss}} \sim |E|^2 V \frac{\omega}{Q}$$

$$P_{\text{out}} \leq P_0$$

$$\dot{a}_i = \left(i\omega_i - \frac{\omega_i}{2Q_i} - \frac{1}{2}|\kappa_i|^2\right)a_i - \kappa_i^*s_{i-1}e^{ikd} + A_i$$
 Resonance Loaded quality factor Driven by readout bus and DM

from Maxwell:
$$A_i = -\frac{\omega}{2\omega_i}J_{\mathrm{dm}}^2\eta_i$$

$$\dot{a}_i = \left(i\omega_i - \frac{\omega_i}{2Q_i} - \frac{1}{2}|\kappa_i|^2\right)a_i - \kappa_i^* s_{i-1}e^{ikd} + A_i$$

$$\dot{a}_{i} = \left(i\omega_{i} - \frac{\omega_{i}}{2Q_{i}} - \frac{1}{2}|\kappa_{i}|^{2}\right)a_{i} - \kappa_{i}^{*}s_{i-1}e^{ikd} + A_{i}$$

$$s_{i} = s_{i-1}e^{ikd} + \kappa_{i}a_{i}$$

$$s_{0} = 0 \quad P_{\text{sig}} = |s_{N}|^{2}$$

$$s_i = s_{i-1} e^{ikd} + \kappa_i a_i$$

Bus couples to *one* of N normal modes of the chain of resonators

$$s_n = \sum \kappa_i e^{ikz_i} a_i = \langle b|a\rangle$$

$$s_i = s_{i-1} e^{ikd} + \kappa_i a_i$$

Bus couples to *one* of N normal modes of the chain of resonators

$$s_n = \sum \kappa_i e^{ikz_i} a_i = \langle b|a\rangle$$

$$|b\rangle=\left(\kappa_1^*e^{-ikz_1},\kappa_2^*e^{-ikz_2},\ldots\right) \qquad \left|a\right\rangle=\left(a_1,a_2,\ldots\right)$$
 Readout mode Resonator state

DM Coherence

$$|\text{readout}\rangle \propto |a\rangle$$
 $|\langle \text{readout}|a\rangle|^2 \sim N^2 \kappa^2 |a|^2$

$$P_{\rm signal} \sim NP_0$$

DM Coherence

$$|\text{readout}\rangle \not\propto |a\rangle \longrightarrow \left|\frac{\langle \text{readout}|a\rangle_{\text{incoherent}}}{\langle \text{readout}|a\rangle_{\text{coherent}}}\right|^2 \sim \frac{1}{N}$$

$$P_{\rm signal} \sim P_0$$

Multimode Readout

For incoherently driven resonators:

$$\sum_{\text{normal modes}} P_n = NP_0$$

Multimode Readout

For incoherently driven resonators:

$$\sum_{\text{normal modes}} P_n = NP_0$$

Spatial combining

Multimode Readout

For incoherently driven resonators:

$$\sum_{\text{normal modes}} P_n = NP_0$$

Spatial combining

Other techniques

Frequency modulation
Nontrivial waveguide dispersion
Frequency-dependent coupling phases

Detectors

Dark count per detection area (SNSPD or Skipper CCD):

$$\frac{\Gamma_{\rm dc}}{A} \approx \frac{4 \cdot 10^{-4}}{\rm sec \, cm^2}$$

Required detector size for phased array readout:

Common frequency resonators per bus

Scan Strategy

$$SNR = \frac{\Gamma_{sig}t_{int}}{Max \left[1, \Gamma_{bkg}t_{int}\right]^{1/2}}$$

Cover 0.1 eV to 2 eV in one year:

$$\left(\frac{\Delta m}{m}\right)_{\text{run}} \approx 0.2 \left(\frac{500}{Q}\right) \left(\frac{N_{\omega}}{100}\right)$$

$$N_{\rm runs} \approx \frac{Q}{N_{\omega}} \ln \left(\frac{\omega_1}{\omega_2}\right) \approx 16 \left(\frac{Q}{500}\right) \left(\frac{100}{N_{\omega}}\right)$$

ALP DM Detection Reach

Dark Photon DM Detection Reach

Conclusions

Integrated photonics is a rich platform for DM searches

Scalable, existing fabrication infrastructure, low loss, empirically characterizable, ultra-low dark count detection, tunable search strategies

More detailed design and development work to be done (e.g., incoherent power combining strategies)

Resonant Cavity Detection for Large DM Mass

Multicell or Multiple Cavities

(ADMX-4) [Yang et al, 2020]

[Jeong et al, 1710.06969] (RADES) [Melcon et al, 1803.01243]

Phase-matched excited modes

(ADMX-Orpheus) [Cervantes et al, 2204.09475] (MADMAX) [Majorovits et al, 1712.01062] (LAMPOST) [Chiles et al, 2110.01582]

$$\int d^3x \, \hat{E} \cdot \vec{J}_{\rm dm} \neq 0$$

Signal and Noise

$$\Gamma_1 = \frac{QJ_{\rm dm}^2V}{8\omega^2}|\eta|^2 \left(\frac{m^2/4Q}{(\omega - m)^2 + m^2/4Q^2}\right)$$

$$|\eta|^2 = \frac{\left|\int d^3x \hat{E} \cdot \hat{n}\right|^2}{V \int d^3x \, |\hat{E}|^2}$$

Signal and Noise

Signal from one resonator:

$$\Gamma_{\rm dp} \approx \frac{10^{-2}}{\rm sec} \left(\frac{0.2 \, {\rm eV}}{m}\right)^2 \left(\frac{\epsilon}{10^{-10}}\right)^2$$

$$\Gamma_{\rm alp} \approx \frac{10^{-11}}{\rm sec} \left(\frac{0.2 \, {\rm eV}}{m}\right)^4 \left(\frac{g}{10^{-10} \, {\rm GeV}^{-1}}\right)^2 \left(\frac{B}{9.4 \, {\rm T}}\right)^2$$

Assuming:
$$Q=5\cdot 10^3 \quad |\eta|^2=0.1$$

$$V=\left(\frac{\pi}{\omega}\right)\left(\frac{2\pi}{\omega}\cdot 100\right)\times 10\,\mu\mathrm{m}$$

Dark Photon DM Detection Reach

XENON1T [An et al 2006.13929]

LAMPOST [Chiles et al 2110.01582]

Axion-like Particle DM Detection Reach

CAST [CAST 1705.02290]

JWST [Janish and Pinetti 2310.15395]

Telescope [Grin et al 0611502] [Todarello et al 2307.07403]

Stars [Dolan et al 2207.03102]