

Center for Axion and Precision Physics Research

Superconducting cavities in CAPP

Apr 15-16 2024

Ohjoon KWON, Jiwon Lee, Ju-Yeong Lee, Danho Ahn, Seongtae Park HeeSu Byun, Jinsu Kim, Woohyun Chung, Dojun Youm

IBS-CAPP, South Korea

- Introduction
	- Axion haloscope with high Q-factor cavity
	- High temperature superconductor (HTS) ReBCO
- ReBCO microwave cavity in CAPP
- ReBCO cavities for CAPP's main axion experiment (CAPP-MAX)
- Summary

Axions conversion power $\mid P_{signal} \mid$ = $\overline{\beta}$ $\frac{\rho}{1+\beta}g_{a\gamma\gamma}^2$ $2 \frac{\rho_a}{\rho_a}$ $m_{\bar{a}}$ $B^2VC \frac{Q_lQ_a}{\sqrt{Q_lQ_c}}$ $Q_l + Q_a$ D. kim, et al (2020)

 $|g_{a\gamma\gamma}|$: coupling constant C : Form factor of the cavity mode ≥ 0.6 for TM_{010} mode : Cavity volume ※ 35L for ULC T_{sys} : Noise temperature : Applied B-field ※ 12T for CAPP-MAX Q_I : Cavity Q-factor $\frac{1}{N}$ 100k for Cu ULC

Scan rate

$$
\frac{df}{dt} \propto \frac{B^4 C^2 V^2}{T_{sys}^2} Q_l
$$

Goal: Making High-Q superconducting cavities that can withstand high B-field are required.

D. Kim et al., Physics A *(2020), 03*

15%) High Q factor boosts axion scanning speed

When $Q_{\text{cavity}} \ll Q_{\text{a}}$ When $Q_{\text{cavity}} \gg Q_{\text{a}}$ $P_{signal} \propto Q_L$ $P_{signal} \propto Q_a$ $\frac{dE}{dt} \propto Q_L$

R. Cervantes et al., arXiv:2208:03183

Superconductor in a magnetic field

 \geq Type I T_c < 10 K Eg. H c_{Al} : 0.02 T in **Bext** H_c < < 1 T **CANNOT use in axion haloscope search**

 \triangleright *Type II* Type II superconductors form vortices in a magnetic field.

- \checkmark Stronger B field $\hat{\to}$ More vortices $\hat{\to}$ Higher dissipation
- \checkmark Vortex pinning reduces the vibration of vortices $\overline{\mathbf{P}}$ Less dissipation.

 \triangleright Two criteria for evaluating materials \checkmark Large upper critical field (H_{c2}) ü **High depinning frequency**

Dark Wave Lab Workshop 5

15⁾High-temperature superconductor (HTS): ReBCO

*low temperature superconductor

**high temperature superconductor

From Dr. Danho Ahn's slide

15) High-temperature superconductor (HTS): ReBCO

From Dr. Danho Ahn's slide

 $T = 50K, v = 1GHz$ А.М. Романов, et al (2020)

15-16 Apr 2024

ReBCO (HTS) wins !

Biaxially-Textured ReBCO

M. J. Lancaster, "Passive microwave device applications of HTS", Cambridge University Press (2006).

IEEE Trans. Appl. Supercond. 23 (2013) 6601205

 \checkmark Weak links at grain boundaries degrades surface resistance. Multi-layered structure

 \checkmark **Biaxial texture is essential** to avoid weak links

 \rightarrow Impractical to construct 3D microwave cavity

15-16 Apr 2024

KAIST

Ø**TM010** *mode is compatible with vertical division*

Parallel polarization of E-field and the cutting direction doesn't harm Q-factor much

Woohyun's innovative idea:

** Phys. Rev. Lett. **125**, 221302 (2020)

what if the cavity is composed of multiple pieces of HTS sheets or wires?

Dark Wave Lab Workshop 9

KAIST

1971

Flexibility of the ReBCO film + split cavity structure

15-16 Apr 2024

Dark Wave Lab Workshop 10

ib) CAPP's 1st success on high-Q HTS cavity

* Phys. Rev. A. **17**, L061005 (2022)

15-16 Apr 2024

We may reach 108 ?

HTS cavity project: suppressing losses caused at HTS boundaries

F Fuilkura

BASED HIGH- TEMPERATURE SUPERCONDUCTOR

CHARACTERISTIC FEATURE

- ~1um HTS layer
- Electrically open (buffer layer)
- High low substrate!
- Bigger loss at sharp edge..

HTS cavity project: suppressing losses caused at HTS boundaries

Major loss Caused by

- RF leak
- Thermal loss

- 1. misaligment
- 2. Surface defect

during etching or cutting

B ReBCO preparation

Method 1 Method 2

Dielectric region **Electrically** disconnected!!

Cons: harder handing

1st track: The Highest Q-factor in a magnetic field

- Fabricating a perfect unit
- \rightarrow perfect alignment
- \rightarrow Construct cavity with minimum defect or non-ReBCO area.

- High Q-factor possible
	- but sensitive to unit condition and alignment
- New frequency tuning method not to break azimuthal symmetry

Perfect ReBCO surface but units are not electrically connected

1st track results: **> 3M Q-factor!!**

1st track results: **> 107 Q-factor!!!!!**

BOCAPP's two tracks strategy

2nd track: Electrically closed cavity w/ a Q-factor high enough

Simulation result (perfect HTS-ULC w/ 0.2mm vertical gap)

KAIST

1971

15-16 Apr 2024

SICAPP's two tracks strategy

2nd track: Electrically closed cavity w/ a Q-factor high enough

Make an electrically closed wide sheet (by electrically connecting the boundary of copper stabilizers)

- not sensitive to any kind of tuning method
- possible to harm HTS surface during electrical connection (heat, chemical) less Q factor than track 1, but very easy (costs less, easier to fabricate)

Multiple ReBCO tapes are soldered on OFHC sheet and become one electrically closed sheet

KAIST

1971

15-16 Apr 2024

Dark Wave Lab Workshop 22

15-16 Apr 2024

Dark Wave Lab Workshop 23

S³/CAPP's main axion experiment (CAPP-MAX)

- CAPP's flagship experiment to search for axion above 1GHz
- Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) sensitivity

Dilution refrigerator 25mK

JPA (quantum amplifier) $1~2$ GHz

12 Tesla SC magnet 320mm bore diameter **Large cavity**

- maximum volume

- high Q
- easy cooling
- frequency tunable

0.5mm thickness

37L, total ~6kg

< 10 hrs cooling time using typical 4K cooler, tuning assembly included

Q0 > 170k w/o tuning rod >100k w/ tuning rod

15) Ultra-light cavity (ULC) for CAPP-MAX

arXiv 2402.12892

15-16 Apr 2024

TUTE OF

KAIST

1971

Comsol results

Copper cavity? Or HTS cavity??

Due to the relatively big tuning rod (80mm dia), Q0 < 100k in the whole range

i \mathbf{S})ULC2 with ReBCO tuning rod

 \bullet Cu Rod \bullet HTS Rod

Gearbox (1:20) is ready to move HTS tuning rod

Modular design

KAIST

1971

Search <1 DFSZ or <100% axion in dark matter halo using HTS-ULC

BOCAPP-GrAHal collaboration

arXiv: 2110.14406

20mm x 30cm **ReBCO cavity**

(~2024)

KAIST

70cm x 1500mm (580L) OFHC copper cavity

(~2025)

- High Q-factor cavity boost axion scanning speed.
- HTS-ReBCO is the promising material for high Q-factor within a strong magnetic field.
- CAPP has achieved 10⁷ Q-factor even inside 8T magnetic field.
- Large size (>30L) HTS cavity is ready to assemble for 1.2-
1.5GHz and 1.5-1.9GHz CAPP-MAX.