Scaling ML: model selection and workflow

Proposed Milestones

- 1. Identify target ML models in collaboration with experiments
- 2. Port, train, and run at least two target models on two different HPC systems
- 3. Compare two data parallel training solutions for at least one target model
- 4. Compare two hyperparameter optimization tools on at least one target model
- Setting up a prototype Inference as-a-service platform on at least one DOE HPC system

Task list sign up sheet

Email list: CCE-SML@anl.gov

First meeting in January

ML models

- Cosmic Frontier

- Cosmological simulations, DES adversarial domain adaptation (no info yet)
- LSST image processing (no info yet)
- Energy Frontier
 - Tracking with laaS
 - Jet tagging with particle based transformers
- Intensity Frontier
 - DUNE reconstruction (training and IaaS)

Workflow Scaling Training

- Choose an HPC to train on
 - Examples: Aurora, Perlmutter
 - Has the model already been trained on an HPC? Maybe try a different HPC
- Train on one node/GPU
 - Find out if environment is adequate for training model (e.g., are python packages easy to find)
 - Get training data to HPC
 - Benchmark computational performance
- Train on multiple GPUs on the same node
 - Identify issues
 - Measure computational performance and compare to single GPU
- Train across multiple nodes and multiple GPUs
 - Identify issues and compare performance
- HPO

Workflow for Inference as a Service

- Choose one HPC and/or other laaS provider
 - Understand/address security and workflow synchronization issues.
- Test laaS locally on a hybrid CPU/GPU node (as an offloading mechanism)
 - Compare to direct offloading through ONNX or similar
- Test IaaS across HPC interconnect
 - Study latency/throughput scaling vs # of client and server nodes
- Test laaS over WAN
 - Same as above, monitor WAN latency and bandwidth looking for saturation limit