
Two Simulation Tools For Improving Interferometer 
Response Under Imperfect Atom-Optics Laser Pulses

Classical trajectory stray path calculator & optical Bloch equation ‘A matrix’ solver 



The Problem — Imperfect Pulses

Mechanisms for pulse inefficiency

• Detuning spread — the atom cloud is too hot relative to 

the Rabi frequency

• Rabi frequency inhomogeneity across the atom cloud — 

interferometer beam too small relative to the atom cloud 

In general, the response of an atom interferometer to an oscillating 
signal is amplified by multi-loop interferometry, but imperfect pi 
pulses can limit the total number of loops that can be performed
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The Central Idea — Modulate the Phase of the Interferometer Beam to Destructively Interfere Stray Paths 

ARTIQ System

 of 689nm light 
from MAGIS laser system
∼ 4 W

Computer

The phase of the laser is 
imprinted onto the phase 
of the kicked atoms



Simulation Tool — Classical Trajectory Stray Path Calculator

The computer follows the following logic:

For a sequence for which there are  paths which end up in the ground stateN
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Ûπ[ϕ1] =
f (−i) pe−iϕ1

(−i) peiϕ1 f

Increments over 
all  trajectoriesN

Trajectories ‘far away’ from 
one another don’t interfere

Trajectories with disparate 
velocities have 

imperceptible interference 
under spatial averaging
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Initial idea — Computing a Sequence Which Maximizes the Interferometer Contrast 

The initial idea was hunt for a new pulse sequence by

• Only considering optimizations over 8 pulses

• Only consider palindromic sequences

• Only consider phases that belonged a pre-defined phase library


Then brute force compute the interferometer contrast using the stray path 
calculator and sort the sequences by the best resulting contrast 

Phase library

0
π
8

2π
8

3π
8

4π
8

5π
8

6π
8

7π
8

8π
8

9π
8

10π
8

11π
8

12π
8

13π
8

14π
8

15π
8

168/2 = 65,536 sequences

Pulse 
sequence

Interferometer Contrast @ 
504 loops w/ no ac phase 

offset

Phase 
sensitivity?

Rank (listed in 
mathematica file)

0.0440828 Yes (1 pi) 7
0.0377814 Didn’t check 8
0.0617513 No (3 pi) 15
0.0329247 No (2 pi) 17
0.053459 Sorta?(4 pi) 18
0.0490297 No (1 pi) 26
0.0515638 No (1 pi) 28
0.0646001 No (1 pi) 32
0.0637466 No (1 pi) 35
0.0404615 Yes (1 pi) 3
0.0611053 No (1 pi) 36
0.0557966 No (1 pi) 37
0.0545032 No (1 pi) 40
0.0490887 No (2 pi) 43
0.0665145 No (1 pi) 44
0.0581659 No (1 pi) 45
0.0523706 No (1 pi) 46
0.0795381 No (1 pi) 47
0.0569317 No (1 pi) 50
0.0626831 No (1 pi) 52

Palindrome contraint# of pulses we’re 
optimizing over

# of phases in the 
phase library

Trying these sequences out on the actual apparatus, most 
gave us quiet a high contrast at 504 loops, but very few 
were sensitive to a small oscillating laser phase



Phase Sensitivity
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Time

Laser phases: 0 ϕ1 + δϕ ϕ2 − δϕ ϕ3 + δϕ ϕ4 − δϕ ϕ5 + δϕ ϕ6 − δϕ ϕ7 + δϕ ϕ8 − δϕ ϕ

The interferometer phase should be  for an 8 loop interferometerΔϕ = 2 × 8 × δϕ

In general, for an ‘ ’ loop interferometer, the interferometer phase shift should be  L Δϕ = 2 × L × δϕ

Increasing the number of loops enhances 
the sensitivity to oscillating signals 



One Common Denominator  — Sequences with Phase Sensitivity Also Have a Large ‘Central Family’ Population

Pulse 
sequence

Interferometer 
Contrast @ 504 loops 
w/ no ac phase offset

Phase 
sensitivity?

Rank (listed 
in 

mathematica 
file)

Central family 
pop after 8 

pulses for f=10% 

0.0440828 Yes (1 pi) 7 0.9998
0.0377814 Didn’t check 8 0.9998
0.0617513 No (3 pi) 15 0.783584
0.0329247 No (2 pi) 17 0.641068
0.053459 Sorta?(4 pi) 18 0.992614
0.0490297 No (1 pi) 26 0.972587
0.0515638 No (1 pi) 28 0.972587
0.0646001 No (1 pi) 32 0.335838
0.0637466 No (1 pi) 35 0.26379
0.0404615 Yes (1 pi) 3 0.9998
0.0611053 No (1 pi) 36 0.283067
0.0557966 No (1 pi) 37 0.863374
0.0545032 No (1 pi) 40 0.675956
0.0490887 No (2 pi) 43 0.972587
0.0665145 No (1 pi) 44 0.294655
0.0581659 No (1 pi) 45 0.881099
0.0523706 No (1 pi) 46 0.972587
0.0795381 No (1 pi) 47 0.0809828
0.0569317 No (1 pi) 50 0.760004
0.0626831 No (1 pi) 52 0.392031

Sorta NMR 0.992614

The ‘central family’ 
of trajectories

‘Rank3’ sequence

‘Rank47’ sequence



Experimental Characterization of the ‘rank3’ Sequence

Phase amplification  ~1008

Without open loop control
With open loop control
Spontaneous emission limit

2Lδϕ



‘NL’ sequence with N = L = 32

ALL0 sequence

But in the lab, this sequence 
doesn’t perform very well

Using the Classical Stray Path Calculator to Find a General Analytic Expression for 
Laser Phases That Maximize the Central Family Population — The ‘NL’ sequence

So likely we would need to maximize some 
cost function that includes both the CFP and 
the spread in trajectories 

Motivation for making an optical Bloch 
equation solver:

• Initial tests of sequence hunting with 

a cost which was dependent on 
central family population & trajectory 
‘spread’ didn’t result in productive 
sequences


• It is possible that the coupling 
between the spread in detunings and 
spontaneous emission is relevant 
physics to account for, and that’s not 
something the classical trajectory 
calculator has a language for

Four ‘Rank3’ sequences back-to-back

optimal  phase in an 
-group sequence

ϕN
k = (k + 1)th

N

ϕN
k =

2π
N

k(N − (k + 1))

Studying the sequences that maximize the central 
family population at allow loop number, looking for 
a pattern, and extrapolating to higher loop #



̂ρ = (ρ11 ρ12
ρ21 ρ22)

∂t ̂ρ[t] = −
i
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[Ĥ, ̂ρ[t]] −
γ
2

( ̂a† ̂a ̂ρ[t] − 2 ̂a ̂ρ[t] ̂a† + ̂ρ[t] ̂a† ̂a)

Simulation Tool — Optical Bloch Equation ‘A Matrix’ Solver
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Integrating over thermal 
distribution of detunings Integrating over a radial Rabi 

frequency inhomogeneity

the excited state 
population after the final 
beamsplitter pulse with detuning 
 and Rabi frequency 

ρ22[δ, Ω] =

δ Ω

Schrödinger Equation Spontaneous 
Emission

Spontaneous emission can produce states which cannot be described by a single wave function — expressing 
our system with a density matrix whose time evolution follows the Optical Bloch equations can allow us to 
compute the effect of Spontaneous emission in our interferometer




δϕ = 0
δϕ = π/504 × 2The problem is that solving the optical Bloch equations numerically in time for a range of 

different detunings and Rabi frequencies can be computationally expensive, especially at 
high loop #

The idea is to save on computational cost by evaluating for the time 
evolution for a single  pulse, and applying that time evolution operator 
many times — we’re allows to do this b/c the optical Bloch equations are 
just a linear system of equations

π

̂ρ[t] = ̂A11[t]ρ11[0] + ̂A12[t]ρ12[0] + ̂A21[t]ρ21[0] + ̂A22[t]ρ22[0]

Simulation Tool — Optical Bloch Equation ‘A Matrix’ Solver
Simulation parameters:


Ω0 = 7.5 MHz
w0/σ = 3.0
Temp = 3 mK

tπ = 80 ns
17 % imaging loss

As part of characterizing the ‘rank3’ sequence, we studied the susceptibility to 
overall detuning errors of an interferometer operating at  loops with the 
rank3 sequence

L = 504
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0 0)

∂t
̂Aij[t] = −

i
ℏ
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̂A12[0] = (0 1
0 0) ̂A21[0] = (0 0

1 0) ̂A22[0] = (0 0
0 1)



Using the ‘A matrix’ Calculator to Find Optimal Sequences at Higher N
The brute force approach to finding new pulse sequences can be limited by the exponential 
scaling of the possible pulse sequences with increasing , so constraints on the allows pulse 
sequences need to be applied in order to limit the total number of sequences that are simulated

N

For hunting for  sequences, we can assume

• that the global phase does’t matter — assume the first mirror phase is 0

• A phase library of factors of 

• The 16 pulse sequence is a palindrome


Which gives us

•  possible pulse sequences

• estimated compute time 

• Actual compute time 

N = 16

π/2

416/2−1 = 16,384
2.5 s × 47 × 2 ≈ 23 hrs

≈ 18 hrs 12 mins

For hunting for  sequences, if all we did was impose the constraints above, it would take 
 to evaluate each pulse sequence, so we need to apply an 

additional constraint: Only allowing ‘hourglass’ sequences

N = 32
≈ 2.5 s × 432/2−1 × 2 ≈ 170 yrs

0

π
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π

3π
2

Which reduces the total computation time to 2.5 s × 232/2−1 × 2 ≈ 46 hrs

We don’t have a good physical argument for why the best sequences should survive these 
constraints, but the best sequences at smaller  followed them, and we need to reduce the space 
of possible sequences we simulate

N

For each pulse sequence, we run the simulation 
twice : Once with no additional alternating phase 
and once with a small alternating phase  to 
check that with the sequence, the interferometer 
phase maintains a sensitivity to an alternating 
signal


The output of the A-matrix calculator is a list of 
phase sensitive sequences, ranked in order of 
interferometer contrast at no alternating phase

δϕ



Using the ‘A matrix’ Calculator to Find Optimal Sequences at Higher N

Running the best sequences in the lab for different  — 
it happens that some of the best sequences to come out 
of the ‘A matrix’ calculator, also have a large ‘central 
family’ in the classical stray trajectory calculator, and a 
narrow spread of populations in position space

N

• There is a pretty strong case here for 
improving interferometer contrast w/out a 
definitive drop-off in phase sensitivity as we 
go from  to , but it’s not clear 
we see much of an additional improvement 
as we go from  to 


• Indicates that the , ,  
sequences might be particularly well suited 
to a  phase library

N = 8 N = 16

N = 16 N = 32
N = 2m m ∈ ℤ m > 0

π/2

N = 8
N = 16

N = 24 N = 32

‘2023_12_07_N=32_rank_1’ (N = 32)

δϕ = 0

‘Rank3’ (N = 8)

‘2023_12_05_rank_1’ (N = 16)



What Happens When we Relax the ‘Palindrome’ Constraint on the Pulse Sequences — Exploring for N = 8

All  permutations of laser 
phases with a  phase library

168−1

π/8
CFP calculator  sequences with a 

 for 
 

960
CFP > 0.993
f = 0.1, L = 8

‘A matrix’ calculator  of the top performing 
sequences

3

• CFPs run in parallel (10 cores) with the python calculator

• Run in two sections so as not eat up all the RAM on that desktop


• The first 100 million sequences took 

• The last ~160 million took 


• Best CFP sequences written to a txt file

≈ 8.5 hrs
≈ 14.5 hrs

168−1 = 268,435,456


δϕ = 0
δϕ = π/(504 × 2)

Sequence index Sequence index

Sequence 
index Sequence

0
1
2
3

‘Rank3’ for comparison

No sequence obviously 
outperformed ‘rank3’



Conclusion

On the horizon:

• Exploring prospects for using these tools to design pulse sequences for LMT

• Exploring what additional power closed-loop control & trajectory optimization 

algorithms can provide

• We’re continuing to play with and develop these tools in conjunction with 
experiment to better understand how we can improve resonant 
enhancement of atom interferometers under imperfect atom-optics pulses


• We’re currently using optical procured for the MAGIS laser system for our 
interferometer beam, and the result of this work could likely improve the 
enhancement of MAGIS in a resonant, multi-loop operating mode, even 
though the experimental parameter space for MAGIS is different from the 
experiment we’ve built at northwestern
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