‡ Fermilab

MAGIS-100

Pulse Efficiency Simulations Update

Jan Rudolph

Recap

- Efficient pulses (LMT enhancement) is crucial
- Previously presented key factors for pulse efficiency
 - Spontaneous emission from excited state
 - Off-resonant scattering
 - Detuning errors (Doppler shifts, laser noise,..)
 - Inhomogeneous intensity (size ratio, dynamics)
- Boundary conditions for prelim. simulations
 - Size of detector
 - Available measurement time
 - Available laser power
 - Approximate size of atom cloud
- Results
 - Compared and optimized different (composite) pulses
 - Found diverging strategies

Recap

- Two families:
 - Large cloud, larger beam, very cold (size const.)
 - Small cloud, small beam, not as cold (size doubles)

- Issues:
 - No firm boundary on beam size
 - No firm boundary on temperature
 - Cloud dynamics (expansion) more complicated for fermions

Outline

• What is the required size ratio between atom cloud and laser beam?

• What is the largest beam we can accommodate?

• How big is a cloud of fermions and how fast does it expand?

Size Ratio

- Intensity of Gaussian beam varies with ${\sim}r^2$
- Transfer efficiency error varies with $\sim r^4$

$$\left(\frac{\Omega}{\sqrt{\Omega^2+\Delta^2}}\;\text{Sin}\left[\frac{1}{2}\sqrt{\Omega^2+\Delta^2}\;\tau\right]\right)^2$$

- Average transfer efficiency over whole cloud
- Other (composite) pulses have more homogeneous response (r⁸, r¹², ..)
- Size of the cloud not constant, depends on (effective) temperature

Size Ratio

- Integrated transfer efficiency over size ratio
- Single pulse vs. 1000 pulses
- (Plain pulses are already ruled out)
- Abrupt cutoff in transfer efficiency

Beam Size

- Fundamentally limited by tube diameter
- Other obstacles: in-vacuum optics, viewports
- Objects in beam/apertures lead to diffraction and interference
- We may want to simulate this
- Closest object to the center of the tube: lattice launch optics (Ø 87mm)
- Bucket windows (ø 100mm)
- Assuming free aperture of $\pm 3\sigma$
- Max. cloud size: ~1.5mm radius (ratio of 10) ~2.0mm radius (ratio of 7)

Ultracold Atoms & Lensing

- How do you control the size of a cloud for ~10s?
- Do you need degenerate atoms?
- Do you need bosons?

Ultracold Atoms & Lensing

- Comparison between thermal, hydrodynamic, condensed atoms
- BEC vs. DFG
- Target (effective) temperature: 10pK
- 7x10⁶ atoms (degenerate)
- Initial size (left) vs. size at lens (right)
- Thermal clouds way too big
- Fermions ~10x larger than Bosons
- Cloud radii of ~6mm at 10pK (87Sr)

Ultracold Atoms & Lensing

- Numbers are challenging!
- Paper assumes plain pulses, other pulse strategies can help
- Need to relax temperature requirements
- Important: size scales with atom number

3D expansion rate $T_{\rm eff} = 10 \rm pK$	BEC		DFG	
	¹⁷⁴ Yb	⁸⁴ Sr	¹⁷¹ Yb	⁸⁷ Sr
Number of atoms	7×10^{6}		7×10^{6}	
Trapping frequency (2π Hz)	50		50	
Critical temperature (μ K)	0.431		0.834	
Initial size $2R_0(\mu m)$	30.2	41.8	56.86	81.86
Pre-DKC expansion time (t_{DKC}) (ms)	63	61	460	460
Size at lens $2R(t_{DKC})$ (mm)	0.50	0.67	8.21	11.82
Final size $2R(t_{DKC} + 2T)$ (mm)				
T = 40 s	9.27	13.34	12.86	18.51
T = 100 s	23.15	33.32	26.07	37.53
T = 160 s	37.03	53.31	40.43	58.20

Ongoing Work & Status

- Free expansion and lensing of Fermions is more complicated
- Need to simulate DFG lensing with realistic sizes
- Include lens/collimation as optimization parameters for pulse efficiency
- Search for LMT strategy that works with the beam sizes we can support
- (Future) How do the kinematics for the launch and lens sequence work?
- (Future) Do we need to model the laser light diffraction along the tube?
- (Future) Do we want to look into Bosons and LMT with 3-photon transitions?