Stanford University

7% MAGIS-100

Pulse Efficiency Simulations
Update

Jan Rudolph

2% Fermilab



Recap

* Efficient pulses (LMT enhancement) is crucial §
o
* Previously presented key factors for pulse efficiency §
* Spontaneous emission from excited state %
»  Off-resonant scattering *g
* Detuningerrors (Doppler shifts, laser noise,.. ) * 007 05 0 s
* Inhomogeneous intensity (size ratio, dynamics) Pulse Duration (us)

Boundary conditions for prelim. simulations
» Size of detector

* Available measurement time

* Available laser power

* Approximate size of atom cloud

Height (m)

* Results \
* Compared and optimized different (composite) pulses s 1 > T 5
« Founddiverging strategies Time (s)

Stanford University



Recap

* Two families: * Issues:
* No firm boundary on beam size
* Small cloud, small beam, not as cold (size doubles) * No firm boundary on temperature

* Cloud dynamics (expansion) more
complicated for fermions
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Outline

* What is the required size ratio between atom cloud and laser beam?

* What is the largest beam we can accommodate?

* How bigis a cloud of fermions and how fast does it expand?
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Size Ratio
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Size Ratio

Single pulse vs. 1000 pulses

(Plain pulses are already ruled out)
Abrupt cutoff in transfer efficiency

Integrated transfer efficiency over size ratio
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Pulse Efficiency
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* Fundamentally limited by tube diameter

Amplitude

» Other obstacles: in-vacuum optics, viewports

o
o
—

* Objects in beam/apertures lead to diffraction : :
and interference B T

* We may want to simulate this

* Closest object to the center of the tube:
lattice launch optics (@ 87mm)

» Bucket windows (2 100mm)
* Assuming free aperture of +30

* Max. cloud size: ~1.5mm radius (ratio of 10)
~2.0mm radius (ratio of 7)
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Ultracold Atoms & Lensing

* How do you control the size of a cloud for ~10s?

* Do you need degenerate atoms?

* Do you need bosons?
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Ultracold Atoms & Lensing

e Comparison between thermal,
hydrodynamic, condensed atoms

BEC vs. DFG
Target (effective) temperature: 10pK

7x10% atoms (degenerate)

Initial size (left) vs. size at lens (right)

Thermal clouds way too big

Fermions ~10x larger than Bosons
Cloud radii of ~6mm at 10pK (87Sr)
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Cloud size (mm)
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Ultracold Atoms & Lensing

Numbers are challenging!

Paper assumes plain pulses, other pulse
strategies can help

Need to relax temperature requirements

Important: size scales with atom number
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BEC DFG

3D expansion rate Ty = 10 pK
1?4Yb S‘Isr ITIYb RTSr
Number of atoms 7 x 10° 7 x 10°
Trapping frequency (27 Hz) 50 50
Critical temperature (1K) 0.431 0.834
Initial size 2R (pum) 30.2 41.8 56.86  81.86
Pre-DKC expansion time (fpgc) (ms) 63 61 460 460
Size atlens 2R (tpkc) (mm) 0.50 0.67 8.21 11.82
Finalsize 2R(tpgc + 2T) (mm)
T=40s 9.27 13.34 1286 18,51
T=100s 2315 3332 26.07 37.53
T=160s 37.03 5331 4043  58.20
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Ongoing Work & Status

* Free expansion and lensing of Fermions is more complicated

Need to simulate DFG lensing with realistic sizes

Include lens/collimation as optimization parameters for pulse efficiency

Search for LMT strategy that works with the beam sizes we can support
* (Future) How do the kinematics for the launch and lens sequence work?

* (Future) Do we need to model the laser light diffraction along the tube?
* (Future) Do we want to look into Bosons and LMT with 3-photon transitions?
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