

Muon tagging using Kinetic Inductance Detectors

A. Mariani, M. Bal, L. Cardani, N. Casali, I. Colantoni, A. Cruciani, F. De Dominicis, D. L. Helis, A. Grassellino, V. Pettinacci, S. Pirro, T. Roy, D. Van Zanten, M. Vignati

Ministry of Foreign Affairs and International Cooperation

Radiation Impact on Superconducting Qubits - RISQ 2024 May 30–31, 2024, Fermilab, Batavia, IL 60510

INTRODUCTION

Major sources of ionizing radiation in a typical qubit chip (~1 cm²)

Source	Rate of impacts [mHz]
Environmental gammas	~20-30
Muons	~10

CURRENT MITIGATION STRATEGIES:

- Copper and/or lead shields to reduce environmental gammas;
- **Deep-underground laboratories** to drastically reduce **muons.**

Energy distribution of muons interacting in the chip in different location

2 RISQ 2024 - 05/30/2024

A. Mariani | Muon tagging using Kinetic Inductance Detectors

THE IDEA

WHAT:

Develop a new class of quantum processors equipped with a **muon veto**.

WHY:

Protect superconducting-based quantum computers from the detrimental effects of **atmospheric muons**.

HOW:

Tagging muons to identify and reject (or correct) operations performed following a muon interaction within the chip.

ADVANTAGE:

Enables quantum processors above-ground operation.

A. Mariani | Muon tagging using Kinetic Inductance Detectors

THE MUON VETO DETECTOR - REQUIREMENTS

Sufficiently wide surface area to ensure high geometrical efficiency, but not so wide as to increase the interaction rate considerably (and consequently, dead-time).

The muon veto detector must be as close as possible to the chip. It must work at the operation temperature of qubits (tens of mK).

OUR PROJECTS

"Saving quantum computers from cosmic rays"

- Bi-lateral collaboration IT INFN and US SQMS Center, Fermilab
- Funded by MAECI (Ministry of Foreign Affairs and International Cooperation of Italy);
- Budget: ~250 k€;
- Three-year duration (2023-2025).

Ministry of Foreign Affairs and International Cooperation

ACE-SuperQ (Abatement of Correlated Errors in Superconducting Qubits)

- INFN CSN5 Grant for Young Researchers;
- Budget: ~150 k€;
- Two-year duration (2024-2026).

People involved:

A. Mariani | Muon tagging using Kinetic Inductance Detectors

GOALS

- 1) Demonstrate the feasibility of a cryogenic muon veto for superconducting qubits
 - Operation of the first prototype.
- 2) Gain a better understanding of ionizing radiation effects on superconducting qubits
 - Synergistic operation of muon veto and high performing superconducting multi-qubits chip with energy-relaxation times T₁ ~ 100 µs.
- 3) Improve superconducting quantum chip performances
 - Correlated error rate reduction;
 - \rightarrow Longer T_{1;}
 - ➡ Improved frequency stability.

THE MUON VETO DETECTOR - TECHNOLOGY

Ideal device already developed within the **CALDER** (Cryogenic wide Area Light detectors with Excellent Resolution) project (2014-2020).

CALDER PROTOTYPE

- Kinetic Inductance Detector (KID) made of a three-layer aluminum-titanium-aluminum deposited on a 5x5 cm², 650-µm thick silicon wafer;
- Signal rise-time: 120 µs;
- Energy threshold: ~0.5 keV.

THE MUON VETO DETECTOR - TECHNOLOGY

Two CALDER-like prototypes will be used for the muon veto system:

Same KID geometry on a 4.5x4.5 cm², 650-µm thick silicon substrate.

ADVANTAGE	WHY?
Compatible with cryogenic temperatures	Fits close to the chip, reduces size and dead-time
Easy integration (hardware and readout)	KIDs are RF resonators
Large active area (> 20 cm ²)	High geometrical efficiency
Fast signal development (< 1 ms, whole pulse)	Negligible dead-time, prompt muon detection
High muon detection efficiency (~100%)	Muons mean energy deposit, O(100 keV), well above detector energy threshold

MONTE CARLO SIMULATION

Geant4-based Monte Carlo (MC) simulation developed to study the muon veto performance and optimize its design.

mental gammas to

Analog simulation performed for environmental gammas to determine the gamma-induced dead-time.

RESULTS:

- Veto efficiency: ~90%;
- Gamma-induced dead-time: ~0.02%.

THE MUON VETO DETECTOR - FIRST PROTOTYPE

NEXT STEPS

- 1) Characterization of the muon veto detector prototypes;
- 2) **Optimization** of the **cryogenic muon veto** for superconducting quantum devices;
- Commissioning of a high performing superconducting multi-qubit chip (lifetimes T1 ~ 100 μs) equipped with muon veto;
- 4) **Measurement** of the **qubits lifetimes** and **study** of **correlated errors** with and without the use of the muon veto system.

Credit: Valerio Pettinacci

CONCLUSIONS

- Ionizing radiation, including cosmic-ray muons, can degrade the performance of superconducting qubits;
- Muon-induced errors can disrupt quantum error correction and qubit coherence, posing a significant challenge for future quantum processors;
- Mitigation currently requires deep underground labs;
- Our projects propose a cryogenic muon veto for above-ground quantum processors.
- First tests of the muon veto system within this year.

THANKS FOR YOUR ATTENTION!

"This work was supported in part by the Italian Ministry of Foreign Affairs and International Cooperation", grant number US23GR09

ACKNOWLEDGEMENTS:

Ministry of Foreign Affairs and International Cooperation

CONTACT INFO:

ambra.mariani@roma1.infn.it

https://it.linkedin.com/in/ambra-mariani-b5b8661ba