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Outline
• Blackbody radiation (BBR).

– Terminology & order-of-magnitude argument. 

• Tight-fitted device box doesn't shield BBR.
– An analytical waveguide model.

• Filter BBR as micro/millimeter-wave (MW/mmW).
– A novel MW BBR filter.

• The filter works!
– The experiment.

• More exciting progress from the Pyle group.
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Blackbody radiation impact p1

• 1 K BBR: λpeak ≈ 3 mm, fpeak ≈ 100 GHz.
• Q~O(1) wide spectrum.
• “IR” is a misguiding name for the issue.

BBR for us is more of a millimeter/micro-wave.
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I. Blackbody radiation
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Blackbody radiation impact p2

SC resonator

Quasi-particle creation
e.g., de Visser+ (2014)
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Antenna pickup
e.g., Liu+ (2022)

Cryostat BBR
e.g., Martinis+ (2011,14), 
Baselmans/de Visser (2011,14)
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• Cross section aspect ratio (AR) ~ 103.
• All low-frequency modes are TE,

with non-TM components
suppressed by O(AR).

 → Approximately TEM.
• Screw pitch determines

waveguide cutoff frequency.
• Machining tolerance

determines unbounded
propagation (particle-
like).

Rectangular waveguide p1 Machining 
tolerance

Propagation

Screw (pressurized) 
pitch

`

10s mm (W)

10s μm (h)

Ε
B
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SC resonator

Quasi-particle creation
e.g., de Visser+ (2014)

Antenna pickup
e.g., Liu+ (2022)

Cryostat BBR
e.g., Martinis+ (2011,14), 
Baselmans/de Visser (2011,14)
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• E-bend: Bending the TE mode direction.
• Convention: R > 2λ to avoid reflection.

E-bend p1

E

E

R
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• E-bend: Bending the TE mode direction.
• Convention: R > 2λ to avoid reflection.

E-bend p2

E

E

R

Can we use a series of sharp bends 
to stop a sustained transmission?
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• E-bend: Bending the TE mode direction.
• Convention: R > 2λ to avoid reflection.

E-bend p3

E

E

R

Maybe you are already doing it for the 
reason of “blocking straight line-of-sight?”
(LoS is a particle concept.)
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E-bend simulation p1

fcutoff defined by the assumed
50 mm screw distance

Starting t0 show decoherence.
 Transition into particle-like propagation.  →

Near-perfect sustained transmission
through 4 90° bends.

50 m
m

2 mm
20 μm

For experts:
To emphasize design concept and reduce analysis confusion, all simulations 
shown in this talk were deembedded to the waveguide impedance.
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E-bend simulation p2

• Suppressed inner-outer phase lag 
by O(AR).  Δφ=2π(2h/λ) & λ~w

• Varying HFSS meshing criteria
didn’t change the result. 
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• 3” phonon-mediated sapphire radiation detector.
• Transition edge sensor (TES)-based phonon sensor.

TES-based radiation detector

Phonon

Test particle

Phonon 
absorber
(Al)

TES (W)
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“Parasitic” power measurement p1

• Total received power
= Dissipation to substrate
= Constant at transition edge. 

Dissipation

BBR direct 
absorption

Joule heating 

Parasitic power
(subdominant) 

PBBR+PJoule+Pparasitic = Pdissipation @ Tc
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“Parasitic” power measurement p2

Joule heating 
decreases

• Measured suppressed manual 
heating as a signal for increased 
parasitic power insertion.

BBR direct 
absorption
increases

Dissipation
maintained

Parasitic power
(subdominant) 

PBBR+PJoule + Pparasitic = Pdissipation @ Tc
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“Parasitic” power measurement p3

• Detaching phonon absorber did not affect signal size.
 Dominated by direct SC feature absorption.→

• Consistent with qubit impact results. BBR direct absorption

BBR phonon-
mediated absorption
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“Parasitic” power measurement p4

BBR load.

BBR impact w/o any
shielding strategy:

Still is our a controllable 
BBR emitter.

BBR normalized
the detector!!
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Coated double shield p1

185 m
m

2 mm groove

• Qubit community’s double shield with absorber strategy.
e.g., Barends+, 1105.4642.
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• Qubit community’s double shield with absorber strategy.
e.g., Barends+, 1105.4642.

Coated double shield p2
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• Qubit community’s double shield with absorber strategy.
e.g., Barends+, 1105.4642.

Cu powder-loaded 
Stycast 2850

Coated double shield p3
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4-bend flange penetration p1

• More than 15 orders-of-magnitude visible light attenuation.
• Iterated mechanical design until no light leak signal in long-exposure photos.
• More stringent than our frequency range of interest due to shorter wavelengths.
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• Suppressed all BBR, consistent 
with non-wiring-transmitted 
penetration.

4-bend flange penetration p2

Recall: Normalized with this shield.
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• Suppressed all BBR, consistent 
with non-wiring-transmitted 
penetration.

Q: What penetrated the 150-dB optical-tight
4-bend slit and get absorbed by Cu-cast?
A: It’s consistent with the slit waveguide penetration!

4-bend flange penetration p3



II. A microwave filter
for blackbody radiation
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• Stubs on the transmission line create

1) Impedance mismatch below fcutoff – lumped element limit,

2) Off-resonance reflection above fcutoff – sustained wave. 

Microwave stub filter

[Y. Ma+ (2018)]
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• Practical fabrication, can be retrofitted.

Stub filter adaptation p1

1 mm
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• Practical fabrication, can be retrofitted.

Stub filter adaptation p2
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• Analogous to (continuing p.28 design)

– Below fcutoff: A transmission line with impedance continuities.

BBR stub filter p1

1
 
m
m

Red solid:
After modification
Blue dashed:
Before modification
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• Analogous to (continuing p.28 design)

– Below fcutoff: A transmission line with impedance continuities.
– Above fcutoff: 

BBR stub filter p2

Red solid:
After modification
Blue dashed:
Before modification

1
 
m
m

fcutoff: Resonance 
between idealized screw 
boundaries. 

First 5 resonances
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BBR stub filter p3

Red solid:
After modification
Blue dashed:
Before modification

1
 
m
m

fcutoff: Resonance 
between idealized screw 
boundaries. 

First 5 resonances

• Analogous to (continuing p.28 design)

– Below fcutoff: A transmission line with impedance continuities.
– Above fcutoff:

1) Exact association for f = 2c/nL, L: Cavity size in x, y, or z.

      2) Q  ∝ V/A, V: Cavity volume, A: Input/output slit area.

A near-ideal coupling-dominated low-loss cavity
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• Retrofitted an 1×2 mm groove into detector housing’s tight flange.

Proof-of-principle experiment p1

Modified

Unmodified
(for later optimization)
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Proof-of-principle experiment p2

Single-stub BBR filter 
significantly decreased BBR 
leakage!
(We can only set upper limit for how good Cu-cast is.) 
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As measured

Consider phononsensor loss

BBR spectrum
BBR spectrum

× still emissivity

BBR spectrum×emissivity

× Stub pass band

• Consistent with the calculated integrated BBR power.
• MC can radiation recycle efficiency dominated uncertainty.

Proof-of-principle experiment p3
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• High design flexibility & accuracy.
• Compatible with commercial fabrication.
• Can be retrofitted & integrated with exiting

shielding strategies, e.g., w/ BBR absorber.
• It’s pure copper!

• No magnetic material, e.g., Eccosorb, ferrite.
• Easy to use, e.g., v.s. indium,
• Easy to integrate with existing infrastructure.

Benefit of stub filter shielding

A complementary BBR shielding 
technique with unique advantages.
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• Goals
• Compatible with commercial fabrication.
• Place resonance pass bands to filter each other.

– As close as possible to push common resonances to high freq. (2c/L)
– Sufficiently separated to avoid beat generation. (Q)

• Narrow sections = transmission line: Be careful of λ/4 pass!
• >1 cm bendy slit to suppress particle-like penetration.

Toward an optimal design p1

3 
m

m

≈3×1.2 mm grooves

Preliminary
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Still LHe
(2nd PT)

2nd heat ex.
(CP)

Resonance between
idealized/overestimated 
“screw boundaries.”

Toward an optimal design p2

-150 dB

-75 dB

0 dB

Preliminary

Lots of room for 

optimization!



III. More from our group
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• Poster: Quasiparticle Posioning, the Low-
Energy Excess and Stress Relaxation

• Identified stress as a source of phonon QP poisoning.
• A “thermal cycle-recharged” effect that relaxes at a 

time scale of days.

Stress-generated phonon QP poisoning

R. Romani

Stress-generated
phonon QP poisoning
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• Removed all dielectrics to suppress scintillation.
• Optimized spring clamp to suppress stress & vibration

noise.
• Low-BBR leak “copper-cast” feedthrough mechanics.

Low-background housing

M. Reed
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• After reasonable shielding, blackbody radiation impacts quantum 
devices primarily as micro/millimeter-wave.

• Line-of-sight-based strategies fail to shield sustained wave 
penetration.

• We propose a novel adaptation of the microwave stub filter for 
designing blackbody radiation shields.

• Our blackbody radiation filter is practical, can be retrofitted, and free 
from undesirable radiation sources.

• We understand the working principles of the BBR stub filter and
can optimize the design based them.

• We identify stress as a phonon poisoning source.

Summary

Thank you!



Backup
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• 400-mesh Cu powder + Stycast 2850, 1:1 Cu:Stycast part A by 
weight.

Copper-cast shield
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Analysis ingredient 
• Radiation equilibrium inside the MC can, P1=A1S21,1/ΣAiS21,i.

• High-reflectivity, low-leak limit.
• A: Antenna aperture, unknown but  slit length.∝

• Phonon sensor loss, Rn: 198 334 mΩ .→
• Still surface emissivity, √8ε0ω/σ .
• HFSS-simulated pass band:
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Single stub physics



p.46

Stress relaxation
• Relaxed at 2 fW/hr for 5 days

regardless of BBR load.
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Particle-vs-wave penetration p2

• Photon-leaky vs -tight detector
housing.

Flat edge
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