Radiation Impact on Superconducting Qubits 2024 – Recent progress from the Pyle group at UCB

RISQ 2024 Yen-Yung Chang for the Pyle group UC Berkeley/LBNL yychang@berkeley.edu May 30, 2024

Blackbody Radiation Impact on Superconducting Qubits 2024 - Recent progr The Pyle group at UCB

RISQ 2024 Yen-Yung Chang for the Pyle group UC Berkeley/LBNL yychang@berkeley.edu May 30, 2024

Outline

- Blackbody radiation (BBR).
 Terminology & order-of-magnitude argument.
- Tight-fitted device box doesn't shield BBR. – An analytical waveguide model.
- Filter BBR as micro/millimeter-wave (MW/mmW).
 A novel MW BBR filter.
- The filter works!
 - The experiment.
- More exciting progress from the Pyle group.

Blackbody radiation impact p1

- 1 K BBR: $\lambda_{\text{peak}} \approx 3 \text{ mm}, f_{\text{peak}} \approx 100 \text{ GHz}.$
- $Q \sim \mathcal{O}(1)$ wide spectrum.
- "IR" is a misguiding name for the issue.
 BBR for us is more of a millimeter/micro-wave.

I. Blackbody radiation

Blackbody radiation impact p2

Rectangular waveguide p1

- Cross section aspect ratio (AR) ~ 10^3 .
- All low-frequency modes are TE, with non-TM components suppressed by O(AR).
 → <u>Approximately TEM.</u>
- Screw pitch determines waveguide cutoff frequency.
- Machining tolerance determines unbounded propagation (particlelike).

E-bend p1

- E-bend: Bending the TE mode direction.
- Convention: $R > 2\lambda$ to avoid reflection.

E-bend p2

- E-bend: Bending the TE mode direction.
- Convention: $R > 2\lambda$ to avoid reflection.

E-bend p3

- E-bend: Bending the TE mode direction.
- Convention: $R > 2\lambda$ to avoid reflection.

Maybe you are already doing it for the reason of "blocking straight line-of-sight?" (LoS is a particle concept.)

E-bend simulation p1

E-bend simulation p2

TES-based radiation detector

- 3" phonon-mediated sapphire radiation detector.
- Transition edge sensor (TES)-based phonon sensor.

"Parasitic" power measurement p1

"Parasitic" power measurement p2

Parasitic power (subdominant)

Joule heating

decreases

• Measured suppressed manual heating as a signal for increased parasitic power insertion.

$$P_{\rm LBR} + P_{\rm Joule} + P_{\rm parasitic} = P_{\rm dissipation} @ T_{\rm c}$$

BBR direct

absorption

increases

Dissipation

maintained

"Parasitic" power measurement p3 Detaching phonon absorber did not affect signal size. \rightarrow Dominated by direct SC feature absorption. Consistent with qubit impact results. BBR direct absorption BBR phonon-mediated absorption

"Parasitic" power measurement p4

Coated double shield p1

• Qubit community's double shield with absorber strategy. e.g., Barends⁺, 1105.4642.

Coated double shield p2

• Qubit community's double shield with abo e.g., Barends⁺, 1105.4642.

egy.

Coated double shield p3

• Qubit community's double shield with absorber strategy. e.g., Barends⁺, 1105.4642.

4-bend flange penetration p1

- More than 15 orders-of-magnitude *visible light* attenuation.
 - Iterated mechanical design until no light leak signal in long-exposure photos.
 - More stringent than our frequency range of interest due to shorter wavelengths.

4-bend flange penetration p2

• Suppressed all BBR, consistent with non-wiring-transmitted penetration.

4-bend flange penetration p3

II. A microwave filter for blackbody radiation

Microwave stub filter

Stubs on the transmission line create
1) Impedance mismatch below *f*_{cutoff} – lumped element limit,
2) Off-resonance reflection above *f*_{cutoff} – sustained wave.

[Y. Ma+ (2018)]

Stub filter adaptation p1

• Practical fabrication, can be retrofitted.

Stub filter adaptation p2

• Practical fabrication, can be retrofitted.

BBR stub filter p1

- Analogous to (continuing p.28 design)
 - Below f_{cutoff} : A transmission line with impedance continuities.

BBR stub filter p2

- Analogous to (continuing p.28 design)
 - Below f_{cutoff} : A transmission line with impedance continuities.
 - Above f_{cutoff} :

 f_{cutoff} : Resonance between idealized screw boundaries.

BBR stub filter p3

- Analogous to (continuing p.28 design)
 - Below f_{cutoff} : A transmission line with impedance continuities.
 - Above f_{cutoff} :
 - 1) Exact association for f = 2c/nL, L: Cavity size in x, y, or z.
- 2) $Q \propto V/A$, V: Cavity volume, A: Input/output slit area. A near-ideal coupling-dominated low-loss cavity

Proof-of-principle experiment p1

• Retrofitted an 1×2 mm groove into detector housing's tight flange.

Proof-of-principle experiment p2

Proof-of-principle experiment p3

- Consistent with the calculated integrated BBR power.
- MC can radiation recycle efficiency dominated uncertainty.

Benefit of stub filter shielding

- High design flexibility & accuracy.
- Compatible with commercial fabrication.
- Can be retrofitted & integrated with exiting shielding strategies, e.g., w/ BBR absorber.
- It's pure copper!
 - No magnetic material, e.g., Eccosorb, ferrite.
 - Easy to use, e.g., v.s. indium,
 - Easy to integrate with existing infrastructure.

<u>A complementary BBR shielding</u> <u>technique with unique advantages.</u>

Toward an optimal design p1

- Goals
 - Compatible with commercial fabrication.
 - Place resonance pass bands to filter each other.
 - As close as possible to push common resonances to high freq. (2c/L)
 - Sufficiently separated to avoid beat generation. (*Q*)
 - Narrow sections = transmission line: Be careful of $\lambda/4$ pass!
 - >1 cm bendy slit to suppress particle-like penetration.

Toward an optimal design p2

III. More from our group

Stress-generated phonon QP poisoning

- Poster: Quasiparticle Posioning, the Low-Energy Excess and Stress Relaxation
- Identified stress as a source of phonon QP poisoning.
- A "thermal cycle-recharged" effect that relaxes at a time scale of days.

R. Romani

Low-background housing

- Removed all dielectrics to suppress scintillation.
- Optimized spring clamp to suppress stress & vibration noise.
- Low-BBR leak "copper-cast" feedthrough mechanics.

M. Reed

Summary

- After reasonable shielding, blackbody radiation impacts quantum devices primarily as micro/millimeter-wave.
- Line-of-sight-based strategies fail to shield sustained wave penetration.
- We propose a novel adaptation of the microwave stub filter for designing blackbody radiation shields.
- Our blackbody radiation filter is practical, can be retrofitted, and free from undesirable radiation sources.
- We understand the working principles of the BBR stub filter and Thank you! can optimize the design based them.
- We identify stress as a phonon poisoning source.

Copper-cast shield

• 400-mesh Cu powder + Stycast 2850, 1:1 Cu:Stycast part A by weight.

Analysis ingredient

- Radiation equilibrium inside the MC can, $P_1 = A_1 S_{21,1} / \Sigma A_i S_{21,i}$.
 - High-reflectivity, low-leak limit.
 - *A*: Antenna aperture, unknown but \propto slit length.
- Phonon sensor loss, $R_n: 198 \rightarrow 334 \text{ m}\Omega$.
- Still surface emissivity, $\sqrt{8\varepsilon_0\omega/\sigma}$.
- HFSS-simulated pass band:

Single stub physics

Stress relaxation

• Relaxed at 2 fW/hr for 5 days regardless of BBR load.

Particle-vs-wave penetration p2

 Photon-leaky vs -tight detector housing.
 Flat edge

