Comparison of G4CMP-Based Simulation to Experimental Data for HVeV Dark Matter Sensors

Warren Perry, University of Toronto for the SuperCDMS Collaboration

GEANT4/G4CMP Satellite Workshop, RISQ 29 May 2024

Motivation for Using G4CMP with High Voltage eV-Resolution (HVeV) Detectors

Purpose of HVeV detectors

- Prototype to prepare for SuperCDMS SNOLAB experiment
- Low-mass (\leq few GeV/c²)* dark matter searches

Fully-validated G4CMP-based simulation is essential to

- Enhance understanding of HVeV detector
 - What physical properties or effects are responsible for experimental observations?
- Use detector response information which is not experimentally probed for data analysis

In this talk, we check to see if our simulation reproduces HVeV experimental observations

E. Azadbakht, Ph.D. Thesis (2022) * PRD 102, 091101 (2020)

E. Azadbakht, Ph.D. Thesis (2022)

PRD 104, 032010, 2021

TES Length

Charge Propagation

NTL Phonon Emission

Prompt Phonons

Vortex Sinks

AI/W QP Trap

Al Fin Length

135 μm x 282 μm

Phonon Sensors

bias

Energy Deposit Results in Phonon Production

Incoming particle deposits energy

- \rightarrow electrons + holes
- \rightarrow prompt phonons

Under V_{bias}

- \rightarrow electrons + holes accelerate
- \rightarrow NTL phonon emission

 $E_{\text{Phonon, Generated}} = E_{\text{recoil}} + N_{\text{eh}} e V_{\text{bias}}$

Note: the above geometry and processes are modeled in G4CMP

Quasiparticles are Created and Trapped in TES

Al Fin

*Quasiparticles **T**ransition Edge Sensor

TES Exploits Resistance–Temperature Transition Curve

Al Fin

Note: the above processes are modeled in TESSim

Temperature [mK]

M. C. Pyle, Ph.D. Thesis (2012) 6

Note: the above processes are modeled in TESSim

 κ - thermal conductivity constant T - TES electron temperature T_{Bath} - substrate (bath) temperature

Other Physical Processes Change the TES Temperature

Comparison of G4CMP-Based Simulation to Experimental Data

1. Parameter tuning

- 1.1. What set of simulation parameter values give the expected pulse shape?
- 1.2. Do tuned parameters match theoretical expectations?

2. Estimating phonon measurement efficiency

- 2.1. Does simulation predict the HVeV detector's ability to collect and convert phonons to a detectable signal?
- 2.2. Are energy loss mechanisms present and used appropriately?

Parameter Choices are Motivated by Absorption Processes

Chosen Parameters

Kelsey et al., NIM A 1055 (2023) 168473.

TESSim Parameters

Corresponding G4CMP parameters are identified for the absorption processes

Note: similar procedure followed for TESSim parameters

TES Simulation Can Be Tuned to Match Data

Tuned 3 Absorption (G4CMP) + 5 TESSim parameters with a χ^2 fit to expected pulse shape

Matching Simulation Output to Data Requires Unphysical Parameter Values

Full table of parameter values in backup slides

Al energy gap – Mocking up a mechanism that increases subgap phonon population

Critical Temperature, Transition width, & Inductance – Not fully understood

Simulation Internals are Used to Estimate Phonon Measurement Efficiency

Using internal state equations of simulation

- temperature
- resistance

we can calculate

$$P_{\text{Joule}} = V_{\text{TES}}^2 / R_{\text{TES}}$$
$$P_{\text{Bath}} = \kappa (T^5 - T_{\text{Bath}}^5)$$

1st order estimate of phonon energy is given by

 $E_{\text{Phonon, Measured}} = -\int \Delta P_{\text{Joule}} dt$

Measurement efficiency

ratio of $E_{Phonon, Measured}$ to the generated phonon energy

$$E_{\rm Phonon, \ Generated} = E_{\rm recoil} + N_{\rm eh} e V_{\rm bias}$$

Comparing to Experiment Reveals Deficits in Phonon Collection Model

Of the phonon energy that is collected in an event,

¹/₃ is dissipated to the bath
²/₃ goes to a decrease in Joule heating

The reported measurement of HVeV phonon measurement efficiency is ≥29%*

The simulation predicts this value to be ~66%

No other energy loss mechanisms are modeled

Summary & Outlook

Comparing our simulation to experimental data reveals

- We can match simulated pulse shape to data if we use unphysical parameter values to mock up a missing mechanism that increases the sub-gap phonon population*
- Simulation does not correctly predict the detector's phonon measurement efficiency due to missing phonon energy loss mechanisms[†]

We are working on implementing more physics processes to make the simulation more realistic

- * Check if latest G4CMP developments (e.g. surface anharmonic decay) eliminate this issue
- **†** Model other mechanisms of energy loss in the crystal (e.g. energy escape through clamps)

0 /

प्रज्ञवि DAE

supercdms.slac.stanford.edu

Noether-Programm

15

Backup Slides

G4CMP Models Detector Response Using Known Physics

Are these processes used appropriately in the simulation? Do they give results consistent with the experiment?

Kelsey et al., NIM A 1055 (2023) 168473.

Optimized Parameter Values

Tuned Values which cannot be compared to a real measurement

Tuned Values which are inconsistent with HVeV measurements

Tuned Values which are unphysical

CrystalSim Parameter	HVeV Measurement / Literature	Tuned Value
Sensor Absorption	N/A	0.54
TES subgap absorption	N/A	0.0365
Energy gap [µeV]	173.715	1075

TESSim Parameter	HVeV Measurement / Literature	Tuned Value
Critical Temperature [mK]	64 - 66	84.5
Transition Width [mK]	0.3 - 0.8	2.45
Substrate Temperature [mK]	N/A	67.25
Volumetric Heat Capacity Coefficient [J/(m ³ K ²)]	N/A	100
Inductance [nH]	650 - 800	1250

Near-Surface Photon Interactions Affect NTL Amplification

$e^{\mbox{-}/h^{\mbox{+}}}$ pairs are made with ${\sim}1~eV$ kinetic energy split between them

- Lose most energy fast, radiating phonons
- Particles 'random walk' in ~10 µm in any direction

1.95 eV photons penetrate ${\sim}5~\mu m$ in silicon

- Charges can hit surface during random walk
- NTL amplification is reduced

Tuning Process: χ² Measurement

Perform frequency-domain χ^2 fit with TESSim trace, template and noise

$$\chi^2(A,t) = \int_{-\infty}^{\infty} df \frac{|\tilde{v}(f) - Ae^{-i2\pi ft}\tilde{s}(f)|^2}{J(f)}$$

- A amplitude (use experiment calibrations)
- $\tilde{\boldsymbol{v}}$ Signal (TESSim trace)
- \tilde{s} average pulse shape (Template)
- $J = \langle n^2 \rangle$ square of noise trace (ASD)
- t time shift between trace and template (floats)

Tuning Process: Parameter Scanning

Each parameter is scanned to identify an 'optimal' value for data-simulation matching

Scan each parameter until all converge

Absorption Processes Affect the Pulse Shape

Nominal set of simulation parameter values gives poor fit to data

Use understanding of absorption processes to select parameters for tuning