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TES thermal connection

▶ TES is thermally connected to the absorber by a
thermal conductanceGta.

TES
C

∼ Tc

Absorber Ta

Gta
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TES thermal connection

▶ TES is thermally connected to the absorber by a
thermal conductanceGta.

▶ Absorber is thermally connected to the heat bath
(fridge) by a thermal conductanceGab.
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TES thermal connection
▶ TES is thermally connected to the absorber by a

thermal conductanceGta.
▶ Absorber is thermally connected to the heat bath

(fridge) by a thermal conductanceGab.
▶ TESSim assumes that the absorber and the heat

bath are identical. Gab is infinite.

TES ∼ Tc
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TES electro-thermal connection

▶ TES is thermally connected to the absorber by a
thermal conductanceGta.

▶ Absorber is thermally connected to the heat bath
(fridge) by a thermal conductanceGab.

▶ TESSim assumes that the absorber and the heat
bath are identical. Gab is infinite.

▶ TES in SuperCDMS devices is kept under a constant
voltage.

▶ Change in current changes the magnetic flux of the
inductor L

▶ Magnetic flux changes are sensed and amplified by
the SQUID

TES

Vb

L SQUID

Absorber
Gta
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Current equation

Kirchoff’s loop rule:

0 = −Vb + IbRb + (Ib − IL)Rs

TES Channel
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Current equation

Kirchoff’s loop rule:

0 = −Vb + IbRb + (Ib − IL)Rs

0 = (IL − Ib)Rs + L
dIL
dt

+ ILRp + IL
1∑
i

1
Ri
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Current equation

İL =
Vb0 − IL

(
R0 +

1∑
k Gk(Ak)

)
L

Ii = IL
Gi∑
k Gk

,

Gi =
1

Ri
=

2

Rn
coshAie

−Ai ,

Vb0 = Vb
Rs

Rb +Rs

R0 = Rp +
RbRs

Rb +Rs

TES Channel

10 / 25



The Physics Problem ODE derivation Solving the ODEs Applications Conclusion and Future Work

Heat equation

dT

dt
C = PJ + PB + PP

TES
PJoule

Absorber
PBathPPhonon
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Heat equation

dTs

dt
C = PJ + PB + PP

PJ = IR2(T ) =
I

G2(T )

PB = K (Tn
b − Tn) = ΣVeff (T

n
b − Tn)

▶ Σ is the electron-phonon coupling in the
TES

▶ n = 5 for SuperCDMS detectors
▶ Phonon power comes from CrystalSim

TES
PJoule

Absorber
PBathPPhonon
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Coupled ODEs

İL =
Vb0 − IL

(
R0 +

1∑
k Gk

)
L

Ȧi =

K
(
T 5
b − T 5

i (Ai)
)
+ I2L

Gi(Ai)

(
∑

k Gk(Ak))
2 + PP,i

TwC
.

▶ Not the whole story!
▶ Current effects have to be taken into account
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TES resistance model

R(T ) =
1

G(T )
=

Rn

2

[
1 + tanh

(
T − Tc

Tw

)]
A ≡ T − Tc

Tw
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Current effects

▶ Tc is lowered due to a non-zero current.
▶ The effectiveTc is modeled by

T eff
c = Tc

(
1− |I|

Ic

)n

▶ For SuperCDMS detectorsn = 2/3
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Current effects

▶ Current effects allow for the individual
TESs to cross-talk through the matrix ∂Ti

∂Aj∑
j

∂Ti

∂Aj
Ȧj =

PB,i + PJ,i + PP,i

TwC
− ∂Ti

∂IL
İL

▶ Thermal conductivity between
neighboring TESs through the substrate is
not included.
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Matrix inversion
▶ Applying chain rule the matrix ∂Ti

∂Aj
can be written as:

∂Ti

∂Aj
= δijai + uivj

▶ Which can be inverted using the Sherman-Morrison formula:(
∂Ti

∂Aj

)−1

=
δij
ai

− (ui/ai)(vj/aj)

1 +
∑

k ukvk/ak

ai = Tw +BiIL
2

Rn
e−2Aj

Bi =
2

3

Tc

Ic

1∑
k Gk

sgn Ii

(
1− |Ii|

Ic

)−1/3

ui = BiIi, vj = − 2

Rn
e−2Aj
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ODEs final form
▶ Putting all together

İL =
Vb0 − IL

(
R0 +

1∑
k Gk

)
L

Ȧi =
Di

ai
− 1

1 +
∑

k ukvk/ak

ui
ai

∑
j

vj
aj

Dj

Where

Di =
K

(
T 5
b − T 5

i

)
+
(

IL∑
k Gk

)2
Gi + PP

i

TwCn
+BiGi

Vb0 − IL (R0 + 1/
∑

k Gk)

L

▶ We have n+1 coupled ODEs with no numerical matrix calculations.
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ODE solver and limitations

▶ The ODEs are easily solved using CVODE solver inC ++.
▶ TESSim reports the pulse amplitude, temperatureA,Tc,T eff

c ,R,G and power.
▶ The ODE solver time step is smaller than the rise time to be able to capture all the changes.
▶ The number of TESs in a detector can be huge∼ 1000, TESSim uses a lumping algorithm
▶ It lumps TESs into∼ 35 pseudo-TESs that are bigger in size.
▶ Volumetric quantities (C ,K ,Rn) are scaled accordingly.
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Pulse shape

▶ Impulse response for a single TES

δI(t) =A (Eph)

(
e
− t

τ+ − e
− t

τ−

)
1

τ±
=

1

2τLR
+

1

2τTES

± 1

2

√(
1

τLR
− 1

τTES

)2

− 4
R0

L

L(2 + β)

τ

τTES =
C

G (1− L )
, τLR =

L

RL + (1 + β)R0
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Important TES model parameters

Parameter Description Units
fin efficiency Contribution of proximity effect to volumetric quantities

L Inductance H
Rb Bias resistance Ω

Rs Shunt resistance Ω

Rp Parasitic resistance Ω

Rn Normal-phase resistance of an individual TES Ω

Ic Critical current of an individual TES A
Tc TES critical temperature K
Tw Width of TES superconductivity transition curve K
γ Volumetric specific heat of the TES,C = fscVeffγTc J/(m3K2)

Σ Electron-phonon coupling constant,K = ΣVeff W/(m3K5)
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Pulse shape

▶ HVeV run 2

Credits: Warren Perry

▶ HVeV run 4

Work in progress
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Electro-Thermal Oscillations
▶ In HVeV and HV detectors, it was found that the baseline resolution worsens as the bias

point is lowered
▶ ETO contributes a frequency component to the noise that degrades the resolution
▶ TESSim was used to check that the device in question lives in the ETO region.
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Conclusion and Future Work

▶ TES coupled ODEs are solved numerically using BDF or Adams method from CVODE
▶ Sherman-Morrison formula is used to avoid matrix calculations
▶ TESSim is very successful in producing the correct pulse shape for single TESs and HVeV

data
▶ Future code developments:

▶ 3T model to include the thermal conductivity between the substrate and the heat bath
▶ Thermal conductivity between neighboring TESs through the substrate
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