ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Electro-Thermal Feedback Physics in Transition Edge Sensor

David Sadek

Radiation Impact on Superconducting Qubits @ Fermilab G4CMP Satellite Workshop

May 29, 2024

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Outline

The Physics Problem

ODE derivation

Current equation Heat equation TES resistance Current effects

Solving the ODEs

Applications

Conclusion and Future Work

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

TES thermal connection

TES is thermally connected to the absorber by a thermal conductance G_{ta}.

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

TES thermal connection

- TES is thermally connected to the absorber by a thermal conductance G_{ta}.
- Absorber is thermally connected to the heat bath (fridge) by a thermal conductance G_{ab}.

Solving the ODEs

Applications

Conclusion and Future Work

TES thermal connection

- TES is thermally connected to the absorber by a thermal conductance G_{ta}.
- Absorber is thermally connected to the heat bath (fridge) by a thermal conductance G_{ab} .
- TESSim assumes that the absorber and the heat bath are identical. G_{ab} is infinite.

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

TES electro-thermal connection

- ► TES is thermally connected to the absorber by a thermal conductance *G*_{ta}.
- Absorber is thermally connected to the heat bath (fridge) by a thermal conductance G_{ab} .
- ► TESSim assumes that the absorber and the heat bath are identical. *G*_{ab} is infinite.
- TES in SuperCDMS devices is kept under a constant voltage.
- Change in current changes the magnetic flux of the inductor L
- Magnetic flux changes are sensed and amplified by the SQUID

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Current equation

Kirchoff's loop rule:

$$0 = -V_b + I_b R_b + (I_b - I_L) R_s$$

TES Channel

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Current equation

Kirchoff's loop rule:

8/25

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Current equation

Kirchoff's loop rule:

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Current equation

$$\begin{split} \dot{I_L} &= \frac{V_{b0} - I_L \left(R_0 + \frac{1}{\sum_k G_k (A_k)} \right)}{L} \\ I_i &= I_L \frac{G_i}{\sum_k G_k}, \\ G_i &= \frac{1}{R_i} = \frac{2}{R_n} \cosh A_i e^{-A_i}, \\ V_{b0} &= V_b \frac{R_s}{R_b + R_s} \\ R_0 &= R_p + \frac{R_b R_s}{R_b + R_s} \end{split}$$

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Heat equation

$$\frac{dT}{dt}C = P_J + P_B + P_P$$

 The Physics Problem
 ODE derivation
 Solving the ODEs
 Applications
 Conclusion and Future Work

 0000
 0000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0

Heat equation

$$\frac{dT_s}{dt}C = P_J + P_B + P_P$$
$$P_J = IR^2(T) = \frac{I}{G^2(T)}$$
$$P_B = K \left(T_b^n - T^n\right) = \Sigma \mathcal{V}_{eff} \left(T_b^n - T^n\right)$$

- Σ is the electron-phonon coupling in the TES
- ▶ n = 5 for SuperCDMS detectors
- Phonon power comes from CrystalSim

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Coupled ODEs

$$\dot{I_L} = \frac{V_{b0} - I_L \left(R_0 + \frac{1}{\sum_k G_k}\right)}{L} \\ \dot{A_i} = \frac{K \left(T_b^5 - T_i^5 \left(A_i\right)\right) + I_L^2 \frac{G_i(A_i)}{\left(\sum_k G_k(A_k)\right)^2} + P_{P,i}}{T_w C}.$$

Not the whole story!

Current effects have to be taken into account

 The Physics Problem
 ODE derivation
 Solving the ODEs
 Applications

 0000
 0000000000
 000
 0000
 0000

Conclusion and Future Work

TES resistance model

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Current effects

- \blacktriangleright T_c is lowered due to a non-zero current.
- The effective T_c is modeled by

$$T_c^{\rm eff} = T_c \left(1 - \frac{|I|}{I_c}\right)^n$$

• For SuperCDMS detectors n = 2/3

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Current effects

Current effects allow for the individual TESs to cross-talk through the matrix $\frac{\partial T_i}{\partial A_i}$

$$\sum_{j} \frac{\partial T_i}{\partial A_j} \dot{A}_j = \frac{P_{B,i} + P_{J,i} + P_{P,i}}{T_w C} - \frac{\partial T_i}{\partial I_L} \dot{I}_L$$

 Thermal conductivity between neighboring TESs through the substrate is not included.

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Matrix inversion

• Applying chain rule the matrix $\frac{\partial T_i}{\partial A_i}$ can be written as:

$$\frac{\partial T_i}{\partial A_j} = \delta_{ij} a_i + u_i v_j$$

• Which can be inverted using the Sherman-Morrison formula:

$$\left(\frac{\partial T_i}{\partial A_j}\right)^{-1} = \frac{\delta_{ij}}{a_i} - \frac{(u_i/a_i)(v_j/a_j)}{1 + \sum_k u_k v_k/a_k}$$
$$a_i = T_w + B_i I_L \frac{2}{R_n} e^{-2A_j}$$
$$B_i = \frac{2}{3} \frac{T_c}{I_c} \frac{1}{\sum_k G_k} \operatorname{sgn} I_i \left(1 - \frac{|I_i|}{I_c}\right)^{-1/3}$$
$$u_i = B_i I_i, \qquad v_j = -\frac{2}{R_n} e^{-2A_j}$$

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

ODEs final form

Putting all together

$$\dot{I_L} = \frac{V_{b0} - I_L \left(R_0 + \frac{1}{\sum_k G_k}\right)}{L}$$
$$\dot{A_i} = \frac{D_i}{a_i} - \frac{1}{1 + \sum_k u_k v_k / a_k} \frac{u_i}{a_i} \sum_j \frac{v_j}{a_j} D_j$$

Where

$$D_{i} = \frac{K\left(T_{b}^{5} - T_{i}^{5}\right) + \left(\frac{I_{L}}{\sum_{k} G_{k}}\right)^{2} G_{i} + P_{i}^{P}}{T_{w}C_{n}} + B_{i}G_{i}\frac{V_{b0} - I_{L}\left(R_{0} + 1/\sum_{k} G_{k}\right)}{L}$$

▶ We have n+1 coupled ODEs with no numerical matrix calculations.

Solving the ODEs

Applications

Conclusion and Future Work

ODE solver and limitations

- The ODEs are easily solved using CVODE solver in C + +.
- TESSim reports the pulse amplitude, temperature A, T_c , T_c^{eff} , R, G and power.
- ► The ODE solver time step is smaller than the rise time to be able to capture all the changes.
- > The number of TESs in a detector can be huge ~ 1000 , TESSim uses a lumping algorithm
- $\blacktriangleright~$ It lumps TESs into ~ 35 pseudo-TESs that are bigger in size.
- Volumetric quantities (C, K, R_n) are scaled accordingly.

Pulse shape

Impulse response for a single TES

$$\delta I(t) = A \left(E_{ph} \right) \left(e^{-\frac{t}{\tau_{+}}} - e^{-\frac{t}{\tau_{-}}} \right)$$
$$\frac{1}{\tau_{\pm}} = \frac{1}{2\tau_{LR}} + \frac{1}{2\tau_{TES}}$$
$$\pm \frac{1}{2} \sqrt{\left(\frac{1}{\tau_{LR}} - \frac{1}{\tau_{TES}} \right)^2 - 4 \frac{R_0}{L} \frac{\mathcal{L}(2+\beta)}{\tau}}$$
$$\tau_{TES} = \frac{C}{G \left(1 - \mathscr{L} \right)}, \quad \tau_{LR} = \frac{L}{R_L + (1+\beta)R_0}$$

Solving the ODEs

Applications

Important TES model parameters

Parameter	Description	Units
fin efficiency	Contribution of proximity effect to volumetric quantities	
	Inductance	Н
R_b	Bias resistance	Ω
R_s	Shunt resistance	Ω
R_p	Parasitic resistance	Ω
R_n	Normal-phase resistance of an individual TES	Ω
I_c	Critical current of an individual TES	А
T_c	TES critical temperature	К
T_w	Width of TES superconductivity transition curve	К
γ	Volumetric specific heat of the TES, $C=f_{sc}\mathcal{V}_{eff}\gamma T_c$	$J/(m^3K^2)$
Σ	Electron-phonon coupling constant, $K = \Sigma \mathcal{V}_{eff}$	$W/(m^3K^5)$

The Physics Problem	ODE derivation	Solving the ODEs	Applications	Conclusion and Future Work
Pulse shane				

HVeV run 2

HVeV run 4

Solving the ODEs

Applications

Electro-Thermal Oscillations

- In HVeV and HV detectors, it was found that the baseline resolution worsens as the bias point is lowered
- ETO contributes a frequency component to the noise that degrades the resolution
- ► TESSim was used to check that the device in question lives in the ETO region.

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

Conclusion and Future Work

- ► TES coupled ODEs are solved numerically using BDF or Adams method from CVODE
- Sherman-Morrison formula is used to avoid matrix calculations
- TESSim is very successful in producing the correct pulse shape for single TESs and HVeV data
- Future code developments:
 - \blacktriangleright 3T model to include the thermal conductivity between the substrate and the heat bath
 - Thermal conductivity between neighboring TESs through the substrate

ODE derivation

Solving the ODEs

Applications

Conclusion and Future Work

