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TES thermal connection

» TESisthermally connected to the absorber by a
thermal conductance Gy,,.
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TES thermal connection

» TESisthermally connected to the absorber by a c
thermal conductance Gy,,. ~ T
P Absorber is thermally connected to the heat bath Gta

(fridge) by a thermal conductance G 3. Absorber | Tj
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TES thermal connection
P> TESis thermally connected to the absorber by a
thermal conductance Gy,,.

» Absorber is thermally connected to the heat bath
(fridge) by a thermal conductance G 5.

» TESSim assumes that the absorber and the heat Heat Bath
bath are identical. GGy, is infinite.

=
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TES electro-thermal connection

>

>

TES is thermally connected to the absorber by a
thermal conductance Gy,,.

Absorber is thermally connected to the heat bath
(fridge) by a thermal conductance G 5.

TESSim assumes that the absorber and the heat
bath are identical. G, is infinite.

TES in SuperCDMS devices is kept under a constant
voltage.

Change in current changes the magnetic flux of the
inductor L

Magnetic flux changes are sensed and amplified by
the SQUID
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Current equation

Kirchoff’s loop rule:

0=—-Vy+ Ry + (Ip — I1) Ry

dI
0= (I —I,)Rs+ L=2 + IR, + I,

dt

Rb
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Current equation

Kirchoff’s loop rule:

Rb L Rp

AN MN——AN

0=-Vo+ IRy + (I — I1) Rs
d 1 | Rs R1 R2 R3
0=(I,—I) R +Ld HLR i T s () s %

R;
1
Vio — 11 (RO + Dok Gk(Ak)>
L

£

I = TES Channel
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Current equation

Vio — I, (Ro + sy )

I = 7
G, " ol
I, = ILZk Gy VW W
R
Yo =VYop TR, +]§R TES Channel
Ro=R,+ Rb-HS%
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PJoule
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Heat equation

dT
C:PJ-I-PB-I-PP
dt
I
P;=1IR*T) =

Pp=K (T} —=T") = XVeys (I3 = TT)

» > isthe electron-phonon couplingin the
TES

» n = 5 for SuperCDMS detectors
» Phonon power comes from CrystalSim
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Coupled ODEs

:VbO—IL<R0+ﬁ>

I 7

Gi(As
o K() TP (A) + I%m + Py
Ai = T,,C

» Notthe whole story!

» Current effects have to be taken into account
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Current effects

» T.islowered due to a non-zero current.
» The effective T, is modeled by

IN"
et =, (11
o)

» For SuperCDMS detectors n = 2/3

Conclusion and Future Work
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Current effects

» Current effects allow for the individual

TESs to cross-talk through the matrix BTZ
OT; ; _ Ppit Pri+ Ppi OTi ;
0A; " T.C o1, "

» Thermal conductivity between
neighboring TESs through the substrate is
notincluded.
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Matrix inversion

» Applying chain rule the matrix g}, can be written as:
J
oT;
P S 5la + u;v;
J i iUj
8Aj

» Which can be inverted using the Sherman-Morrison formula:

(8E )_1 _ Gy (uifai)(v/a;)

8Aj a_l B 1+Zkukvk/ak

2
a; = Ty + BiILR—e_MJ'

n
20T, 1 L\ "3
B =--¢_~ I (1 =2
i 3IcszkSgnl< 1.
2
u; = B, v; = — 24
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ODEs final form

» Putting all together

Vio — I (Ro + sl )

I = 7

. D, 1 Uj Vj

A == il 2D,
' a; 1+Zkukvk/akaizaj J

Where
2
K (17 = 19) + (ks ) Gi+ PF
b — (17 - 1) + (v @+z+&Qm—hmwuzwm

TwChr L
» We have n+1 coupled ODEs with no numerical matrix calculations.
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ODE solver and limitations

vVvYvyVvyVvyy

The ODEs are easily solved using CVODE solverin C' + +.

TESSim reports the pulse amplitude, temperature A, T, T R, G and power.

The ODE solver time step is smaller than the rise time to be able to capture all the changes.
The number of TESs in a detector can be huge ~ 1000, TESSim uses a lumping algorithm
It lumps TESs into ~ 35 pseudo-TESs that are bigger in size.

Volumetric quantities (C, K, R,,) are scaled accordingly.
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Pulse shape

» Impulse response for a single TES

o1(60)=A(B) (¢~ )
11 )

T+ 2TLrR  2TrES
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Important TES model parameters
Parameter Description Units
fin efficiency | Contribution of proximity effect to volumetric quantities
L Inductance H
Ry Bias resistance Q
Ry Shunt resistance Q
R, Parasitic resistance Q
R, Normal-phase resistance of an individual TES Q
1. Critical current of an individual TES A
T TES critical temperature K
Tow Width of TES superconductivity transition curve K
vy Volumetric specific heat of the TES, C' = fo V.1, J/(m3K?)
) Electron-phonon coupling constant, K = XV, ¢ W/(m3K?)
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Electro-Thermal Oscillations

Solving the ODEs
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Conclusion and Future Work

» In HVeV and HV detectors, it was found that the baseline resolution worsens as the bias

pointis lowered

» ETO contributes a frequency component to the noise that degrades the resolution

P> TESSim was used to check that the device in question lives in the ETO region.
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Conclusion and Future Work

» TES coupled ODEs are solved numerically using BDF or Adams method from CVODE
» Sherman-Morrison formula is used to avoid matrix calculations

» TESSim is very successful in producing the correct pulse shape for single TESs and HVeV
data
» Future code developments:

» 3T model to include the thermal conductivity between the substrate and the heat bath
» Thermal conductivity between neighboring TESs through the substrate
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