Trigger Primitives calculation in DAPHNE 2A

Antonio Verdugo on behalf of CIEMAT Team

PDS Data Taking Meeting

1st February 2024

Goal

Develop, implement, and test real time trigger primitives (TP) algorithms in the DAPHNE FPGA.

Intermediate steps:

- Understand the functionality of Daphne HW/FW.
- Have a Daphne V2A and learn how to operate it.
- Implement a self-trigger algorithm (not available when we started) in order to trigger the TP calculation.

Typical light signal in DAPHNE

Self-trigger & Primitive Calculation ALGORITHM

- ADC FILTERED DATA: Moving average of 2 ADC RAW DATA SAMPLES
 → Reduces High Frequency noise.
- BASELINE:
 - Based on cumulative average over previous N (4) samples.
 - Stop baseline calculation if peak is detected.
- **AMPLITUDE =** Filtered Data Baseline.
- **SLOPE =** Amplitude last simple Amplitude previous sample.
- **PEAK DETECTION**: Threshold over the slope.
- TRIGGER CONDITIONS: Based on the TP: Amplitude, charge, ...

Updated on each CLK cycle

Primitive Calculation: First Approach

- NO DETECTION State:
 - Peak detection variables calculation (Baseline Calculation).
- **TRIGGER CONDITION:** When a <u>Peak fullfilling trigger conditions is detected in NO DETECTION State.</u>
- DETECTION State :
 - Peak detection variables calculation (Baseline remains constant)
 - Waveform`s Primitive Calculation.
 - Peak detection does not generate a self-trigger signal.
- SEND DATA State: Waveform's Primitve Data available.

Primitive Calculation: Second Approach

Trigger not allowed during over-shoot

- NO DETECTION State:
 - Peak detection variables calculation (Baseline Calculation).
- **TRIGGER CONDITION:** When a <u>Peak fullfilling trigger conditions is detected in NO DETECTION State.</u>
- DETECTION States :
 - Peak detection variables calculation (Baseline remains constant)
 - Waveform`s Primitive Calculation.
 - Peak detection does not generate a self-trigger signal.
- SEND DATA State: Waveform's Primitve Data available.

Comparison: FIRST vs SECOND approaches

MAIN DIFFERENCES

- Baseline:
 - OLD APPROACH: Follows undershoot.
 - NEW APPROACH: Remains constant.
- Self-Trigger:
 - OLD APPROACH: It is allowed during undershoot.
 - NEW APPROACH: It is not allowed during undershoot.

MOTIVATION

- Self-Trigger Event \rightarrow Waveform's Primitive Calculation.
- Waveform`s Primitive Calculation is not accurate in the undershoot.

Peak detection disabled until base-line recovery

Trigger Primitives (last proposal)

Example waveform and results

Post-synthesis timing simulation (SiPM signal from alpha source)

Example waveform and results

Post-synthesis timing simulation (MegaCell)

Space required for Trigger Primitives sending

<pre>Data_Available: out std_logic;</pre>	Primitives calculation available. Active HIGH				
<pre>Time_Peak: out std_logic_vector(7 downto 0);</pre>	Time in Samples to achieve de Max peak				
Time_Pulse_UB: out std_logic_vector(9 downto 0)); Time in Samples of the light pulse signal is UNDER BASELINE (without undershoot)				
Time_Pulse_OB: out <pre>std_logic_vector(10 downto ()</pre>	0); Time in Samples of the light pulse signal is OVER BASELINE (undershoot)				
Max_Peak: out std logic vector(15 downto 0); Amplitude in ADC counts od the peak					
Charge: out std_logic_vector(19 downto 0); Charge of the light pulse (without undershoot) in ADC*samples					
Number_Peaks_UB: out <pre>std_logic_vector(3 downto</pre>	0); Number of peaks detected when signal is UNDER BASELINE (without undershoot).				
Number_Peaks_OB: out std logic vector(3 downto	0); Number of peaks detected when signal is OVER BASELINE (undershoot).				

73 bits required vs 32 bits reserved in the trailer word

We could start with a reduced number of Trigger Primitives for the ProtoDune HD in order to test, at least, the TP calculation and the comunication with the DAQ.

Status and Next Steps

- The algorithm was fully tested with Python scripts using real data from CIEMAT's PDE measurement setups.

- One channel "Self-Trigger & Primitive Calculation" block is implemented and simulated (Post-Synthesis timing simulation) with Vivado.

- We have also tested one channel block in Daphne v2A firmware by means of spy-buffers.

Next:

- Implement and test the block on all 40 channels using the actual output FIFOs and collecting data from the Daphne output frame. As a DAQ (Felix) is required to read the output frame, this test must be performed where a DAQ is available (CERN, FERMILAB ?).

Thanks for your attention!

Peak Detection - BACKUP

Baseline calculation is based in calculating cumulative average.

$$\overline{x} = \frac{\sum x_i}{n} \to \overline{x_{i+1}} = \overline{x_i} + \frac{x_{i+1} - \overline{x_i}}{n+1}$$
$$\overline{x_{i+1}} = \overline{x_i} + \frac{x_{i+1} - \overline{x_i}}{2^N}$$

FILTERED DATA	BASELINE	AMPLITUDE	SOLPE	PEAK DETECTION
Initial condition: $F_0 = x_0$ Algorithm:	Initial condition: $B_0 = x_0$ Algorithm:	Initial condition: $A_0 = 0$ Algorithm:	Initial condition: $S_0 = 0$ Algorithm:	Initial condition: $P_0 = false$ Algorithm:
$F_{i+1} = \frac{x_i + x_{i+1}}{2}$	If Detection $B_{i+1} = B_i$ Else B_{i+1} $= B_i + \frac{F_{i+1} - B_i}{8}$	$A_{i+1} = F_{i+1} - B_{i+1}$	$S_{i+1} = A_{i+1} - A_i$	If $S_{i+1} < -10$ $P_0 = false$ Else $P_0 = true$
			C	iemat DUNE

Waveform's Primitive Calculation- BACKUP

While **DETECTION** State

PULSE WITH	ΤΙΜΕ ΤΟ ΡΕΑΚ	MAX AMPLITUDE	CHARGE	NUMBER OF PEAKS		
Initial condition: $W_0 = 0$ Algorithm: $W_{i+1} = W_i + 1$	Initial condition: $TP_0 = 0$ Algorithm: If $Amplitude_{i+1} < MA_i$ $T_{i+1} = W_{i+1}$ Else $T_{i+1} = T_i$	Initial condition: $MA_0 = 0$ Algorithm: If $Amplitude_{i+1} < MA_i$ $MA_{i+1} = Amplitude_{i+1}$ Else $MA_{i+1} = MA_i$	Initial condition: $C_0 = 0$ Algorithm: $C_{i+1} = C_i$ $+ Amplitude_{i+1}$	Initial condition: $NP_0 = 0$ Algorithm: If $Peak_Detection$ $NP_{i+1} = NP_i + 1$ Else $NP_{i+1} = NP_i$		
Ciemat Dive						