Fermilab (Department of Science

Safety Assessment Document Updates for DOE O 420.2D SAD Section IV Chapter 06 – MINOS Experimental Areas

Zarko Pavlovic Accelerator Readiness Review 19 March 2023

- MINOS Experimental Areas Overview
- Hazard Inventory
- Non-Accelerator Specific Hazards
- Accelerator Specific Hazards
- Maximum Credible Incident
- Summary of Credited Controls

- MINOS Experimental Areas Overview
- Hazard Inventory
- Non-Accelerator Specific Hazards
- Accelerator Specific Hazards NA
- Maximum Credible Incident NA
- Summary of Credited Controls NA

Accelerator-specific hazards do not apply to this area

- MINOS Experimental Areas Overview
- Hazard Inventory
- Non-Accelerator Specific Hazards

MINOS Experimental Areas Overview

- Consists of MINOS Service Building on the surface and the underground areas accessible with the elevator
- Positioned along the centerline of the NuMI Neutrino Beamline
- The underground area is about 350ft under ground
- Used by NuMI based neutrino experiments and low cosmic background Dark Matter experiments

MINOS Experimental Areas Overview

- The experiments are located in
 - Shaft MAGIS-100
 - Detector Hall ArgonCube
 - Access Tunnel NEXUS, QUIET, SENSEI, MOSKITA, SBC
- There are no experiment detectors located in the Absorber Access Tunnel.

MINOS Experimental Areas Overview

- Access to the MINOS Service Building requires a valid ID card
- Access to the MINOS elevator and underground areas requires a key to the elevator enclosure. The keys are checked out from the Main Control Room
- To obtain a key, personnel must have current General Employee Radiation Training (GERT) and NuMI/MINOS Underground Safety Training.
- In case of emergency the secondary egress path goes from the Absorber Access Tunnel, to the Absorber enclosure, along the decay pipeline to MI-65, to the stairwell that leads to the surface; there is also an elevator at MI-65. Use of the secondary egress path requires breaking the NuMI beam interlock at the entrance to the Absorber Enclosure.

Areas accessible from the MINOS Service Building

Described in SAD IV-06 1. MINOS Service Building

- 2. MINOS Shaft
- 3. MINOS Detector Hall
- MINOS Access Tunnel
- 5. Absorber Access Tunnel

Described in SAD III-08 6. Muon Alcoves 1, 2 & 3

- 7. Absorber Enclosure, which contains
- Muon Alcove 0
- 8. Absorber Entry Passage
- Absorber Utility Area
- 10. Decay Pipe Tunnel

- MINOS Experimental Areas Overview
- Hazard Inventory
- Non-Accelerator Specific Hazards

Hazard Inventory for MINOS Experimental Areas

Radiological			Toxic Materials		
	Prompt Ionizing Radiation	\boxtimes	Lead		
	Residual Activation		Beryllium		
	Groundwater Activation	\boxtimes	Flourinert & Its Byproducts		
	Surface Water Activation		Liquid Scintillator Oil		
\boxtimes	Radioactive Water (RAW) Systems		Pseudocumene		
	Air Activation		Ammonia		
	Closed Loop Air Cooling		Nanoparticle Exposures		
	Soil Interactions		Flammables and Combustibles		
	Radioactive Waste	\boxtimes	Combustible Materials (e.g., cables, wood cribbing, etc.)		
	Contamination		Flammable Materials (e.g., flammable gas, cleaning materials, etc.)		
	Beryllium-7		Electrical Energy		
\boxtimes	Radioactive Sources		Stored Energy Exposure		
	Nuclear Material	\boxtimes	High Voltage Exposure		
\boxtimes	Radiation Generating Devices (RGDs)		Low Voltage, High Current Exposure		
\boxtimes	Non-Ionizing Radiation Hazards		Kinetic Energy		
	Thermal Energy		Power Tools		
\boxtimes	Bakeouts		Pumps and Motors		
	Hot Work		Motion Tables		
\boxtimes	Cryogenics		Mobile Shielding		
	Potential Energy		Magnetic Fields		
\boxtimes	Crane Operations		Fringe Fields		
\boxtimes	Compressed Gasses		Other Hazards		
\boxtimes	Vacuum/Pressure Vessels/Piping		Confined Spaces		
\boxtimes	Vacuum Pumps		Noise		
\boxtimes	Material Handling	\boxtimes	Silica		
	Access & Egress	\boxtimes	Ergonomics		
\boxtimes	Life Safety Egress		Asbestos		
		\boxtimes	Working at Heights		

- Accelerator specific hazards are bold-purple – None for MINOS Experimental Areas
- All MINOS Experimental Areas hazards are evaluated via the common Risk Matrix tables
 - Covered in SAD Section I, Chapter 4
- Hazards evaluated via risk assessment methodology per DOE-HDBK-1163-2020
 - Likelihood (L):
 - Anticipated (A), Unlikely (U), Extremely Unlikely (EU), Beyond Extremely Unlikely (BEU)
 - Consequence (C):
 - High (H), Moderate (M), Low (L), Negligible (N)
 - Risk (R):
 - I, II, III, IV (descending order of concern)

Non-Accelerator Specific Hazards

	Risk Tables Description	Baseline Risk	Residual Risk
2,1	Radiological – Onsite-1 Facility Worker	R: I	R: III, IV
2.2	Radiological – Onsite-2 Co-located Worker	R: I	R: III, IV
2.3	Radiological – MOI Offsite	R: IV	R: IV
2.4	Toxic Materials – Onsite 1 Facility Worker	R: *	R: *
2.5	Toxic Materials – Onsite 2 Co-located Worker	R: *	R: *
2.6	Toxic Materials – MOI Offsite	R: *	R: *
2.7	Flammable & Combustible Materials – Onsite-1 Facility Worker	R: *	R: *
2.8	Flammable & Combustible Materials – Onsite-2 Co-located worker	R: *	R: *
2.9	Flammable & Combustible Materials – MOI Offsite	R: *	R: *
2.10	Electrical Energy – Onsite-1 Facility Worker	R: *	R: *
2.11	Electrical Energy – Onsite-2 Co-located Worker	R: *	R: *
2.12	Electrical Energy – MOI Offsite	R: *	R: *
2.13	Thermal Energy – Onsite-1 Facility Worker	R: *	R: *
2.14	Thermal Energy – Onsite-2 Co-located Worker	R: *	R: *
2.15	Thermal Energy – MOI Offsite	R: *	R: *
2.16	Kinetic Energy – Onsite-1 Facility Worker	R: *	R: *
2.17	Kinetic Energy – Onsite-2 Co-located Worker	R: *	R: *
2.18	Kinetic Energy – MOI Offsite	R: *	R: *
2.19	Potential Energy- Onsite-1 Facility Worker	R: *	R: *
2.20	Potential Energy – Onsite-2 Co-located Worker	R: *	R: *
2.21	Potential Energy – MOI Offsite	R: *	R: *
2.25	Access & Egress – Onsite-1 Facility Worker	R: *	R: *
2.26	Access & Egress – Onsite-2 Co-located Worker	R: *	R: *
2.27	Access & Egress – MOI Offsite	R: *	R: *
2.28	Environmental Hazards	R: *	R: *

*

This hazard has been evaluated within the common Risk Matrix table included in SAD Section I Chapter 04 *Safety Analysis*. Work in the specified areas involving this hazard implements the controls specified in the common Risk Matrix table. No unique controls are in use.

🛯 🛟 Fermilab

10 3/19/2

- MINOS Experimental Areas Overview
- Hazard Inventory
- Non-Accelerator Specific Hazards

- Radioactive Water (RAW)
 - MINOS Sump area has a chance of containing tritiated water due to accelerator operations
 - Fire suppression system uses water from the MINOS sump area

Baseline Qualitative Risk	Controls	Residual Qualitative Risk
(without controls)	Preventive (P)/Mitigative (M)	(with controls)
L: A C: H R: I	 P: Postings intended to caution workers of area hazard. P: Radiological Work Permit prevents unauthorized personnel form areas where excessive residual radiation exists. P: Training for workers to identify and respond to the hazard M: Run Conditions to ensure total radiation levels are within expected parameters 	L: BEU C: M R: IV

Radioactive sources

SENSEI, NEXUS, QUIET use radioactive sources to test/calibrate detectors

Baseline Qualitative Risk (without controls)	Controls Preventive (P)/Mitigative (M)	Residual Qualitative Risk (with controls)
L: A C: H R: I	 P: MINOS Service Building and Underground are posted as "Controlled Area" and "Radioactive Materials." P: Workers must be on access list or have an MCR key to enter the MINOS Surface Building P: Workers must have a permanent key or an MCR key to enter the elevator room to go down to the MINOS Underground P: Workers must have GERT or Rad Worker training AND have Radioactive Source training to be qualified as Source Monitors M: Sources are either used in place with one of more qualified workers or are placed and signed in or out of Source Monitor box located in MINOS electronics room 	L: BEU C: M R: IV

- Radiation Generating Devices (RGDs)
 - NEXUS uses d-d neutron generator in their enclosure

Baseline Qualitative Risk (without controls)	Controls Preventive (P)/Mitigative (M)	Residual Qualitative Risk (with controls)
L: A C: H R: I	 P: currently, Rad Safety has the key which allows operation of the neutron generator. P: the neutron generator is surrounded by layers of polypropylene, with the intention that nowhere outside the enclosure is considered a radioactive area. The collimated neutron beam hits a target surrounded by lead shielding with the same intention. P: when the neutron generator is first turned on, tests will be made by Rad Safety RCTs and RSOs to ensure that no radioactive area is present that presents a danger. M: Scheduled tests of the radiation field will be made after the neutron generator is brought into operation. 	L: BEU C: M R: IV

- Non-Ionizing Radiation Laser
 - MAGIS uses 3B and 4 lasers

Baseline Qualitative Risk	Controls	Residual Qualitative Risk
(without controls)	Preventive (P)/Mitigative (M)	(with controls)
Class 3B and 4 Laser L: A C: H R: I	 P: Class 1 (light tight) enclosures P: ORC and work planning processes P: Locked/Interlocked system P: LOTO procedure or other procedure approved by the laser safety officer (LSO) P: Affected areas are posted M: Use of PPE 	L: BEU C: M R: IV

Questions?

