#### **ProtoDUNE-HD Data Analysis Organization**

Laura Paulucci, UFABC ProtoDUNE DRA PDS Sim/Reco Meeting Feb 5<sup>th</sup>, 2024



#### **ProtoDUNEs**

- The DUNE prototypes are the place for testing the technology that will be put in the far detectors
  - Unique opportunity to characterize the systems in DUNE-like conditions
- The DUNE PDS is new and has never been characterized in its proposed setup
- Goals (technical perspective)
  - Show that X-Arapucas work as expected
  - Show that the proposed PDS meets the requirements for a successful DUNE physics program
  - Feed our simulations with data-based information and make it as close as possible to the real system



### PDHD PDS

• Supercells: 160 X-arapucas of 10 x 50 cm<sup>2</sup>



- Daphne v2 DAQ
- Different components (2 WLS bars and 2 SiPM models) will require dedicated effort to disentangle their individual impacts on parameters of interest





## **Plans for ProtoDUNE-HD**

- Single PE characterization
- Gain vs voltage, SNR, calibration
- Cross-talk & afterpulses
- Stability overtime
- Time resolution
- Arapuca detection efficiency
- Comparison of components' performance



## **Single PE characterization**

#### Study done in ProtoDUNE-SP



- Use of de-noising algorithms that preserve the signal rise time and integral



#### Gain

• Study done in **ProtoDUNE-SP** 

DUNE:ProtoDUNE-SP

12-H-MPPC

5000

measures the

2000 300 Charge [ADU × tt]

overall gain at the applied bias voltage

3000

4000





1200

1000

Entries / bin 008 008

400

200

0

0

1000

### **SNR and Calibration**

\*Needs correction for background photons

 Study done in ProtoDUNE-SP charge signal  $\rightarrow$  # photons detected mean value from the Gaussian fit of the 1PE peak  $P(n) = \frac{\lambda^n e^{-\lambda}}{n!}$  with  $P(0) = e^{-\lambda}$  $\mu_1$ SNR =  $\sigma_0$ mean number of photons per flash  $\lambda = -\ln\left(\frac{N_0}{N_{\text{Tot}}}\right)$ Gaussian spread of the OPE peak 12-H-MPPC UNE:ProtoDUNE-SP DUNE:ProtoDUNE-SP 12-H-MPPC 20





#### **Crosstalk and afterpulses**

Study done in ProtoDUNE-SP

calibration factor

crosstalk and afterpulse probability =  $c_i / g_i$   $\triangleleft$  gain

sensitive to the over-voltage on the PD





### **Stability over time**

#### Study done in ProtoDUNE-SP



- Shaded area corresponds to 5% gain interval





- High resolution: 14 ns for consecutive light signals
  3 ns for <u>T0</u>
  - ProtoDUNE-SP had an optical clock of 150 MHz (FD1-2 will use 62.5 MHz)



#### **Arapuca detection efficiency**

Needs data + MC simulation



evaluated from offline data reconstruction (baseline subtraction, waveform integration and charge-to-photon conversion)

simulation within LArSoft





#### Interaction with other WGs

- Analysis held within the PD Consortium, by PD members
  - Important input for physics analysis  $\rightarrow$  **DRA group**
  - Also the Calibration WG

#### **Task list**

| Task Item                                               | Person(s) Responsible - HD            | Status – HD | Person(s) Responsible – VD  | Status – VD |
|---------------------------------------------------------|---------------------------------------|-------------|-----------------------------|-------------|
| ()                                                      |                                       |             |                             |             |
| Develop PDS Timing Calibration                          |                                       |             |                             |             |
| Develop PDS Gain Calibration                            |                                       |             |                             |             |
| Develop PDS Single PE Response Shape Calibration/Tuning |                                       |             |                             |             |
| Develop PDS Light Yield Calibration                     |                                       |             |                             |             |
| ()                                                      |                                       |             |                             |             |
| Rhiannon Jones & Mike Mooney   Physics calib            | ration for ProtoDUNE II, January 2024 |             | Colorado State 👹 University |             |



# Looking forward: ProtoDUNE-VD

- We have to discuss what we want to do in PDVD
- X-Arapucas of 60 x 60 cm<sup>2</sup>
- Xe doping (?)
- Cosmics: only two small CRTs installed in NP02
- PD-DRA group plans on requesting beam with fixed lower possible energy (?)
- Will we be able to perform a full PDS characterization in this scenario?





## **Closing remarks**

- We have developed a suite of requirements to ensure FD1 PDS does its part in meeting the high-level physics goals of DUNE
  - Now is the time to test the PDS and show this is indeed the case
  - We need to fully characterize FD1's PDS
- Proposal to discuss ongoing work on this meeting
  - Report progress at the PD consortium meeting
  - Report calibration progress at the calibration WG meeting

#### Please reach out to both José and myself if you are interested in analyzing PDHD data!

