
Update on the
HSF Conditions Database

06 February 2024

Lino Gerlach1, Ruslan Mashinistov1, Michael Kirby1

1Brookhaven National Lab (US)

Introduction

2

• Brief reminder of HSF Reference implementation

• Recent developments

• Server-side caching

• Single-container deployment

• Status of integration into DUNE

• Test instance @CERN

• Future production instance @BNL

• Conclusion & Outlook

3

payload

remote
payload

store

nopayloaddb

Implementation – Overview client
side

server
side

nopayloadclient

curl http://<host>/api/payloadiovs/?gtName=test_gt&iovNum=42
-> {type_1: url_1, type_2: url_2, …}

*Example query (simplified)

REST*
Experiment-
agnostic lib

nopayloadclient

sPHENIX-
specific lib

sphenixnpc

DUNE-
specific lib

dunenpc

nopayloadclient:

• Client-side stand-alone C++ tool

• Communicates with nopayloaddb (server)

• Local caching

• Handling of payloads

4

Deployment on OKD

• Automated deployment
on OKD (Helm chart)

• Horizontally scalable
• Open Source only

Easily adoptable for
various HEP experiments

Powered by

From Ruslan Mashinistiov

Recent development – server-side caching

5

• Investigated different methods for server-side caching:

• In webserver (nginx) layer, in REST-API layer, add dedicated caching layer (e.g. redis)

• Decided for nginx: easy to configure, high performance. But: no manual cache-invalidation

• Find most frequently accessed endpoints from sPHENIX logs

• Implemented selective in-memory caching for those

• Set cache lifetime to 1 second

• Repeating same request: response freq. >35kHz (1 nginx pod)

Recent development – single container
deployment

6

• Ruslan developed a single docker image that contains all server-side layers

• Passed functionality tests, performance tests still awaiting

• Can be used for easy deployment within HPC

• Nodes w/o internet can have access to the service

• Singularity can also run docker images

• Still some technical issues w/ mounting file system

• Should be fixed soon -> possible deployment at FNAL?

7

Test Deployment @ CERN
• Deployed nopayloaddb on VM @ lxplus (Apache & bare Django):

http://vm-01.cern.ch:8000/api/cdb_rest/
• Installed nopayloadclient & dunenpc in shared location

/eos/user/l/ligerlac/shared/releases
• Corresponding configuration file for nopayloadclient

/eos/user/l/ligerlac/shared/config/for_lxplus.json
• Wrote art service: ConditionsDataService

https://github.com/ligerlac/ifdh-art/tree/feature/hsf_condb_service

Ready to use on lxplus* *After:
• set additional env variables
• replace ifhd_art by my fork

http://vm-01.cern.ch:8000/api/cdb_rest/
https://github.com/ligerlac/ifdh-art/tree/feature/hsf_condb_service

Backend Deployment @ BNL

8

• Fermilab vetos usage of Docker

• BNL is already operating a nopayloaddb instance (for sPHENIX)

• Deployed on SDCC’s OKD cluster

• Deployed an additional, DUNE-specific instance

• Still need access granted from outside the network

• Got the ball rolling on this already in last year’s autumn

• Personnel changes w/ unfortunate timing delayed progress

• Recently, the discussion picked up speed again

• Should be resolved soon

Integration into DUNE software stack

9

• nopayloadclient has been included into SciSoft

• link to ticket: here

• Can now be used on dunegpvm’s (CLI and c++ library)

• Next steps

• Also include dunenpc in scisoft

• Find a place for art service and merge it

• Implement reading of payloads

• Should the service do this or the respective calibration module?

https://cdcvs.fnal.gov/redmine/login?back_url=https%3A%2F%2Fcdcvs.fnal.gov%2Fredmine%2Fissues%2F28198

Conclusion & Outlook

10

Conclusion

• Progress on HSF Reference Implementation

• server-side caching, single-container deployment for HPC (potentially w/o docker)

• Progress on DUNE instance deployment @ BNL

• Request has been approved

Outlook

• I will leave DUNE computing within this month

• Will continue working on HSF Reference Implementation, but not on DUNE integration

• BNL is looking for a replacement to take over

• Difficult to give a time scale at this point

11

Thank you all very much for the
nice time in the Database group!

12

Backup

13

ConditionsDataService - Description
[ligerlac@lxplus790 LArSoftDev]$ lar --print-description ConditionsDataService
===
 service : ConditionsDataService
 provider: user
 source : /afs/cern.ch/user/l/ligerlac/LArSoftDev/srcs/...
 library : /afs/cern.ch/user/l/ligerlac/LArSoftDev/build_slf7.x86_64/...
 Allowed configuration

 ## Any parameters prefaced with '#' are optional.
 ConditionsDataService: {
 ## global configuration parameter for all conditions data
 global_tag: <string>
 ## override url's for given condition types [[type1, url1], ...]
 # override_pairs: [
 # [
 # <string>,
 # <string>
 #],
 # ...
 #]

 }
===

14

ConditionsDataService – Example Config

ConditionsDataService: {
 global_tag: "test_gt"
 override_dict: [
 [”space_charge_effect", ”my_local_file.root"]
]

}

Single configuration parameter
for all conditions data

Optional: overriding

• Use ‘my_local_file.csv’ for electron lifetime, regardless of DB content

• All other contions data according to global tag ’test_gt’

• Isolate impact of new calibrations before inserting into DB

15

Integration into Software Stack

• dunenpc comes with CLI for managing conditions data

• Will be used by calibration experts name of new
calibration type

$ cli_dunenpc createPayloadType moon_phase

$ cli_dunenpc insertPayload snowmass_23 moon_phase my_file.root 42

global tag local file path

validity begin
(run number)

• LArSoft (art) service to access conditions data within a job

• Not aware of any ‘prompt’ processing use case

• Read-only service should be sufficient

16

ConditionsDataService – Implementation
#include <dunenpc/dunenpc.hpp>

class ConditionsData {

private:
 dunenpc::DuneClient client_;

public:

 ConditionsData(Config const& config) {
 client_.setGlobalTag(config.global_tag());
 for (const auto& pair : override_pairs) {
 client_.override(pair.type, pair.url);
 }
 }

 std::string getUrl(const std::string& type, int run_number) const {
 return client_.getUrl(type, run_number);
 }

};

DUNE-specific version of
nopayloadclient (stand-alone)

Does all communication w/ DB,
caching, handling payloads,
low-level configuration

Translate FHiCL parameter set
into client configuration

Simple wrapper for getUrl()

17

Performance Testing – High Frequency

• Simulate offline reco use case

• Many jobs launched at same time

• Cooperative multithreading (asynchio)

• Send requests firsts

• Process responses later

• Allows very high peak request frequency

• Server-side queuing of requests works

10k requests sent
within ~1.2 secs

received all responses
within ~55 sec

