

Detector R&D and Capabilities for Snowmass 2013

Marcel Demarteau

on behalf of Instrumentation Frontier Conveners (Ron Lipton, Howard Nicholson, MD)

> CPAD chairs (Ian Shipsey, MD)

Snowmass Preparatory Workshop on Frontier Capabilities University of Chicago, Feb. 25 - 26, 2013

Outline

- Organization of Instrumentation
- Areas for capability needs
- European Model

The DPF Instrumentation Task Force

From Universities

- Marina Artuso, Syracuse
- Ed Blucher, Chicago
- Bill Molzen, Irvine
- Gabriella Sciolla, Brandeis
- Ian Shipsey*, Purdue
- Andy White, UT Arlington

From laboratories

- Marcel Demarteau*, Argonne
- David Lissauer, Brookhaven
- David MacFarlane, SLAC
- Greg Bock, Fermilab
- Gil Gilchriese, LBNL
- Harry Weerts, Argonne

Ex-officio

- Chip Brock, DPF MSU
- Patty McBride, DPF Fermilab
- Howard Nicholson, DOE Emeritus

Instrumentation in Particle Physics

Commissioned by the Executive Committee of the Division of Particles and Fields, American Physical Society

October 2011

Prepared by the Task Force Members:

Authors: Marina Artuso (Syracuse), Ed Blucher (Chicago), Ariella Cattai (CERN), Marcel Demarteau (co-chair, ANL), Murdock Gilchriese (LBNL), Ron Lipton (FNAL), David Lissauer (BNL), David MacFarlane (SLAC), Bill Molzon (UCI), Adam Para (FNAL), Bruce Schumm (UCSC), Gabriella Sciolla (Brandeis), Ian Shipsey (co-chair, Purdue), Harry Weerts (ANL). Ex-officio: Chip Brock (Michigan State), Patricia McBride (FNAL), Howard Nicholson (Mount Holyoke).

http://www.hep.anl.gov/cpad/docs/dpf_report_v11.pdf

Taskforce created Spring 2011
Report submitted October 2011

Key recommendation formation of a panel on instrumentation Coordinating Panel for Advanced Detectors

- CPAD: to promote, coordinate and assist in the research and development of instrumentation for High Energy Physics nationally, and to develop a detector R&D program to support the mission of High Energy Physics for the next decades.
- CPAD Membership

- From Universities
 - Jim Alexander (Cornell)
 - Marina Artuso (Syracuse)
 - Ed Blucher (Chicago)
 - Ulrich Heintz (Brown)
 - Howard Nicholson (Mt. Holyoke)
 - Abe Seiden (UCSC)
 - Ian Shipsey* (Purdue)

CPAD appointed spring 2012

http://www.hep.anl.gov/cpad/

- From Laboratories
 - Marcel Demarteau* (Argonne)
 - David Lissauer (Brookhaven)
 - David MacFarlane (SLAC)
 - Ron Lipton (Fermilab)
 - Gil Gilchriese (LBNL)
 - Bob Wagner (Argonne)
- International
 - Ariella Cattai (CERN)
 - Junji Haba (KEK)

(*) = co-chair

ENERGY FRONTIER

Energy Frontier Facilities

Machine	Under study	√s in TeV	Luminosity for 5 years in ab ⁻¹	Peak luminosity x10 ³⁴ cm ⁻² s ⁻¹
рр	HL-LHC HE-LHC VHE-LHC	13 33 100	3 (10 years) 0.3 0.3	5 (leveled)
e⁺e⁻ Linear	ILC CLIC	0.25-1 1-3	0.5-1 2	2 2.4
e⁺e⁻ Circular	LEP3 (in LHC tunnel) TLEP (80 km tunnel => VHE-LHC)	Up to 0.24 Up to 0.35	2	1 0.7-50
µ⁺µ⁻	LEMC HEMC	0.125 3-6	2	1 2-4
YY	CLICHE PLC SAPPHIRE	0.125-0.30	1	0.36
ер	LHeC	1.4	0.01-0.1	

Performance Goals of the HL/HE-LHC

- Good muon ID, momentum resolution, dimuon mass resolution (1% at 100 GeV)
- Good charged-particle momentum resolution and reconstruction efficiency
- Efficient triggering and offline tagging of taus and b-jets, requiring pixel detectors close to the interaction region
- Good electron and photon identification, energy resolution, diphoton and dielectron mass resolution (1% at 100 GeV)
- Good missing-transverse-energy and dijet-mass resolution, requiring large hermetic geometric coverage and segmentation.

Detector component	Required resolution	η coverage Measurement	η coverage Trigger
Tracking	$\sigma_{P_T} / p_T = 0.05\% p_T \oplus 1\%$	±2.5	
EM calorimetry	$\sigma_{_E} / E = 10\% / \sqrt{E} \oplus 0.7\%$	±3.2	±2.5
Hadronic calorimetry	$\sigma_E / E = 50\% / \sqrt{E} \oplus 3\%$ $\sigma_E / E = 100\% / \sqrt{E} \oplus 10\%$	± 3.2 3.1 < $ \eta $ < 4.9	± 3.2 3.1 < $ \eta $ < 4.9
μ spectrometer	$\sigma_{P_T} / p_T = 10\%$ @ p _T =1 TeV	±2.7	± 2.4

HL-LHC Challenges

- HL-LHC: pile-up O(140) @ 5x10³⁴ cm⁻² s⁻¹ leveled with 25 ns bunch crossing
- Trigger challenge

- Analysis challenge
 - maintain high and stable efficiency for e, mu, tau, jets, met, b-jets ...
 - Mitigation through timing, vertexing, particle flow, ...

Mitigation through new trigger primitives

Implications for Capabilities

- Challenged for LHC detector development should be well addressed by current test beam facilities (CERN, Fermilab, SLAC) and irradiation facilities (see Erik's talk).
- There are two important observations:
 - 1) The demand for test beams will be very high and a key issue will be the *availability* of the test beam

The duty cycle of Mtest is modest. Can it be improved? The duty cycle of the SLAC test beam is very modest, but fixed. Can the number of beamlines be increased ? Can the future demand be quantified ?

2) The demand for extremely well understood, reproducible test beams will increase given the demands on precision and data volume
A further investment in beam line instrumentation and test beam support could be very valuable to the community

SLAC End Station A Test Beam

- Uses LCLS beam parasitically
- Kick 13.6 GeV LCLS beam to ESA at 5 Hz, 2 x 10⁹ e⁻/ pulse primary beam
- Clean secondary electrons/positrons, p < 13.6 GeV, 0.1/pulse to 2 x 10⁹ e⁻/pulse
- Secondary hadrons $\sim 1 \pi$ / pulse < 12 GeV/c

- Beam structure of the ILC allows for power-pulsing, and the detector design requires it: 200ms duty cycle (5Hz) with 1ms beam
- The capability to mimic the ILC time structure in a test beam would add allow to address some crucial ILC detector issues in a realistic experimental setting

Power Delivery

Sample – Inn – Out – Nee buc	ILC vertex er layers: 2 er layers: 0 ed a factor 0 dget: power	x detec 2.2 W pe 0.6 W pe of >80 to r-pulsing	tor r sensor er senso o stay wig	; 0.92 W r; 0.136 ^v ithin pov	//cm ² W/cm ² ver			250 		
Units = cm Pulsed pov	n wer factor	80		V sensor	1.8					
			- 	_	P_layer	P_layer	I_layer	I_layer	l_sensor	l_sensor
Layer	Number	Active	Active	P/A	Average	Peak	Average	Peak	Average	Peak
	of locations	Width	Length	W/cm^2	W	W	Α	Α	Α	Α
1a	12	1.11	12.49	0.013	2.16	172.8	1.20	96.0	0.10	8.00
1b	12	1.11	12.49	0.013	2.16	172.8	1.20	96.0	0.10	8.00
2a	12	2.20	24.99	0.0022	1.45	116.3	0.81	64.6	0.07	5.38
2b	12	2.20	24.99	0.0022	1.45	116.3	0.81	64.6	0.07	5.38

2.18

2.18

11.59

174.5

174.5

927.1

1.21

1.21

6.44

96.9

96.9

515.1

0.07

0.07

5.38

5.38

Large currents in magnetic field

18

18

84

3a 3b

Totals

How important is beam test compared to lab test?

24.99

24.99

0.0022

0.0022

2.20

2.20

CLIC

Drive beam time structure - initial

4.2 A - 2.4 GeV - 60 cm between bunches

Drive beam time structure - final

BC2		BDS BDS		HILL BC2
TA e- main lir	ac	CLIC at 500 GeV	CLIC at 3 TeV	c TA
<	L (cm ⁻² s ⁻¹)	2.3×10 ³⁴	5.9×10 ³⁴	>
CR combiner ring TA turnaround	BX separation	0.5 ns	0.5 ns	
DR damping Eng PDR predamp@g ring	#BX / train BX / train Train duration (ns)	354	312	
BC bunch compresso BDS beam delivery sys		177	156	Power-nulsing
S amp	Rep. rate	50 Hz	50 Hz	also for CLIC
	σ_x / σ_y (nm)	≈ 200 / 2.3	≈ 45 / 1	crucial
	σ _z (μm)	72	44	

K t₀ physics event (offline)

		Subdetector	Reco Window	Hit Resolution
•	Triggerless readout of full train anticipated	ECAL	10 ns	1 ns
•	Reconstruction window from 10 - 100ns	HCAL Endcap	10 ns	1 ns
	Doworpulsing at 50 Hz	HCAL Barrel	100 ns	1 ns
_	rowerpuising at 50 mz	Silicon Detectors	10 ns	10/√12
		TPC (CLIC_ILD)	Entire train	n/a

- Example: hadron calorimetry at CLIC and a Muon Collider
- Hadron showers take time to develop nuclear processes take more than the ns time scale one would like
- How is resolution affected by integration time for various schemes?
 - Dual readout
 - PFA
- How is resolution affected by choice of absorber and sensor material and pixelation

CLIC

- Full event reconstruction + PFA analysis with background overlaid
 - => physics objects with precise p_T and cluster time information
 - Time corrected for shower development and TOF
- Apply cluster-based timing cuts
 - Cuts depend on particle-type, p_T and detector region
 - Allows to protect high-p_T physics object
- Use well-adapted jet clustering algorithms
 - Making use of LHC experience (FastJet)

20 BXs = 10 ns of $\gamma\gamma \rightarrow$ hadrons

 Triggerless readout of full train anticipated; Reconstruction windows from 10 -100ns; Powerpulsing at 50 Hz

$e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 \text{ jets}$

1.2 TeV background in reconstruction time window

100 GeV background after tight p_T and timing cuts

Particle Flow Challenge

- Timing is a key control of the backgrounds
- Tension between signal formation and calorimeter integration and background control
 - Geant4 simulation of a 30 layer Scintillator-W calorimeter (QGSP_BERT)

• Time distribution of energy deposits (no detector effects!)

Muon Collider Background Challenge

- Muon decays from the beams are the dominant background at a muon collider
 - For a 62.5 GeV muon beam of 2x10¹², 5x10⁶ decays/m per bunch crossing
 - For a 0.75 TeV muon beam of $2x10^{12}$, $4.28x10^5$ decays/m per bunch crossing; 0.5 kW/m.

- Timing is the most important handle to reduce the background at a Muon Collider
 - Reduces backgrounds by 3 orders of magnitude
 - dE/dx also is also needed for S/N and time walk corrections
 - Also critical for ILC/CLIC

Vertex Detector Challenge at CLIC

	CLIC_ILD	CLIC_SID	CMS
Material X/X0 (90°)	~0.9% (3x2 layer)	~1.1% (5 layer)	~10% (3 layer)
Pixel size	20 x 20 µm ²	20 x 20 µm ²	100 x 150 μm ²
# pixels	2.04 G	2.76 G	66 M
Time resolution	~10 ns	~10 ns	<~25 ns
Avg. power/pixel	<~0.2 μW	<~0.2 μW	28 µW

INTENSITY FRONTIER

B-Factories

- BELLE II.V Upgrade
 - Endcap crystal calorimeter
 - Replacement of Belle II pixels with radiation hard pixel detector
 - Cluster counting (dN/dx) in drift chamber for PID
 - Trigger/DAQ/electronics

Charged Lepton Flavor Violation

MEG and Mu2e experiments aimed at CLFV

- Limiting factors for the Mu2e conversion experiment are:
 - Precision tracking with very low (<0.1% X₀) mass to reject decays in orbit from conversions: δp/p of 0.1% on 100 MeV electrons.
 - Intensity: high rates imply need for low latency and resistance to radiation damage
 - Proposed Straw tracker:
 21600 straws, 12.5 μm wall straws in vacuum
 100 kHz per straw

B. Svobodo

Rare K-Decays

- ORKA experiment uses stopped Kaon beam
- Resolve $K^0 \rightarrow \pi^0 vv$ from background

- Very low-mass tracking needed
 - 0.2% X₀ in tracking volume
 - $\sigma(p)/p$ <1% at 150-250 MeV
 - B = 1.3 Tesla
 - 150 kHz rate per wire for drift chamber configuration
- Need for well-understood, high rate, background free low momentum particle beams

COSMIC FRONTIER

Not aware of any accelerator based needs

Clear need for facilities (Erik's talk)

Observations

- There is a very strong demand for beam tests, especially for the LHC experiments and for ILC/CLIC
 - Particle compositions of the beam
 - Momentum range of the beam
 - Flux of the beam
 - Particle time spacing
 - Repetition rate: Optimized duty cycle for beam tests to allow for rapid collection of data is desirable
- The issue of beam time structure that mimics actual running conditions deserves further investigation
- Improvements to overall infrastructure to enable larger scale, realistic beam tests very beneficial
 - Would a formulation of a test beam infrastructure program along the lines of the EUDET program be a worthwhile exercise?

Conclusion

- We are in the process of understanding the anticipated needs of various frontier physics goals to determine the details and their criticality
- Some requests could be quite difficult to accomplish, such as dedicated time structures with external beam clock trigger signals
- Jaehoon Yu, Erik Ramberg and Carsten Hast are writing a whitepaper that will compile existing test beam, irradiation and low-background facilities inside and outside of the country and will outline the future needs
- Your input is appreciated

European Framework Program: EUDET

- EUDET was a Detector R&D program to develop research infrastructure for detector R&D in Europe for the International Linear Collider.
- Supported by the European Union in the 6th Framework Program
- Funding: €21.5M, of which €7M from EU
- Participation: 31 partner institutes from 12 countries
- Funding period: 2006-20010

FIIDE

 Very successful in building infrastructure for detector development

Activities

Management of Infrastructure Initiative

Detector R&D Network

Access to DESY Test Beam Facility

Access to R&D Infrastructure

Test Beam Infrastructure

Infrastructure for Tracking Detectors

Infrastructure for Calorimeters

The EUDET project was officially closed on 31st December 2010 followed by AIDA

Detector R&D towards the International Linear Collider

European Framework Program: AIDA

- Advanced Infrastructures for Detectors at Accelerators (AIDA)
- Supported by the European Union in the 7th Framework Program
- Targets infrastructures required for detector development for future particle physics experiments: SLHC, Linear Colliders, neutrino facilities, B-factories in line with European strategy
- Project coordination: CERN
- Funding: €26M, of which €8M from EU
- Participation: 80 partner institutes from 23 countries
- Funding period: 2011-2014

- Broad base of infrastructures covered:
 - Test beams, irradiation facilities, common software tools, common microelectronics tools and engineering coordination offices.
 - AIDA will work closely with industry to develop new technology to lead to new applications for society.

Advanced European Infrastructures for Detectors at Accelerators

Snowmass Preparatory Workshop on Frontier Capabilities, February 25 - 26, 2013 -- M. Demarteau

AIDA Structure

Work Package structure for AIDA

Snowmass Preparatory Workshop on Frontier Capabilities, February 25 - 26, 2013 -- M. Demarteau

Muon Collider

	Physics	Background
#cluster	1166	4x10 ⁹
#tracks found	89	2110

Physics tracks w/ >1 fake cluster: <5%

	γ	n	е
#particles	1.7 10 ⁸	0.4 10 ⁸	1.0 10 ⁶
Fraction w/hits	2.8%	4.2%	43%
#particles w/hits	5.0 10 ⁶	1.7 10 ⁶	0.4 10 ⁶

No timing cut Timing cut crucial to reduce backgrounds

 $\frac{10^8}{10^7} \frac{10^6}{10^5} \frac{10^4}{10^3} \frac{10^2}{10^2} \frac{10^1}{10^0} \frac{10^{-1}}{10^{-2}} \frac{10^{-3}}{10^{-3}} \frac{10^{-5}}{10^{-5}} \frac{10^{-6}}{10^{-7}} \frac{10^{-8}}{10^{-8}}$ Neutron fluence (cm^-2 per bunch x-ing)

Neutron fluence: ~10% LHC at 1st lyr silicon

Snowmass Preparatory Workshop on Frontier Capabilities, February 25 - 26, 2013 -- M. Demarteau