

The U.S. Muon Accelerator Program

Mark Palmer Frontier Facilities Meeting University of Chicago February 25, 2013

PROGRAM OVERVIEW

February 25, 2013 Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26, 2013)

Fermilab Why a Muon Accelerator Program?

Muon accelerator R&D is focused on developing facilities that can address critical questions on two frontiers...

The Intensity Frontier:

with a *Neutrino Factory* producing well-characterized v beams for precise, high sensitivity studies

<u>The Energy Frontier:</u> with a *Muon Collider* capable of reaching the multi-TeV center-ofmass energies

The unique potential of a facility based on muon accelerators is physics reach that spans 2 frontiers

February 25, 2013

🛟 Fermilab

Muon Accelerators

Accelerator	Energ	y Scale		
Cooling Channel	~200	MeV		
MICE	160-240	MeV	\	
Muon Storage Ring	3-4	GeV		
vSTORM	3.8	GeV		
Intensity Frontier v Factory	10-25	GeV		
Low Energy NF	10	GeV		
IDS-NF 2.0	25	GeV		S
Current IDS-NF	10	GeV		jin,
s-Channel Higgs Factory	~126	GeV CoM		ase
Energy Frontier µ Collider	> 1	TeV CoM		ñ
<i>Opt.</i> 1	1.5	TeV CoM	—	an
Opt. 2	3	TeV CoM	~	ogr
Opt. 3	6	TeV CoM		L L

Fermeiladuon Accelerator Program Timeline roara 2010 ~2020 ~2030 **MAP** Feasibility Advanced Assessment Systems R&D Muon Accelerator R&D Phase Muon Ionization Cooling Indicates a date when Experiment (MICE) an informed decision should be possible Proj X Ph I **Proton Driver** Implementation Proj X Ph II (Project X @ FNAL) Proj X Ph III & IV **IDS-NF** RDR Proposed Muon Storage Ring Intensity Frontier Facility (vSTORM) Evolution to Full Spec v Factory **Collider Conceptual** Technical Design **Energy Frontier** Collider Construction -> **Physics Program**

MAP Goals

Within the 6-year time frame:

 To deliver results that will permit the high-energy physics community to make an informed choice of the optimal path to a high-energy lepton collider and/or a next-generation neutrino beam facility

As well as...

- To explore the path towards a facility that can provide cutting edge performance at both the Intensity Frontier and the Energy Frontier
- To validate the concepts that would enable the Fermilab accelerator complex to support these goals

MUON COLLIDER

February 25, 2013 Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26, 2013)

Fermilab

Muon Collider Block Diagram

Fermilab Muon Collider Parameters

Muon Collider Baseline Parameters							
	Higgs Factory Multi-TeV Baselines						
		to it in t	Upgraded		3-4 Me	V CoM	
D erverse sterr	11	Initiai Cooling	Cooling /		Energy	Spread	
Parameter	Units	Cooling	Combiner		L		
CoM Energy	TeV	0.126	0.126	1.5	3.0		
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	1.25	4.4		
Beam Energy Spread	%	0.003	0.004	0.1	0.1		
Circumference	km	0.3	0.3	2.5	4.5		
No. of IPs		1	1	2	2		
Repetition Rate	Hz	30	15	15	12		
β*	ст	3.3	1.7	1 (0.5-2)	0.5 (0.3-3)		
No. muons/bunch	10 ¹²	2	4	2	2		
No. bunches/beam		1	1	1	1		
Norm. Trans. Emittance, ϵ_{TN}	mm-rad	0.4	0.2	0.025	0.025		
Norm. Long. Emittance, $\epsilon_{\text{\tiny LN}}$	mm-rad	1	1.5	70	70		
Bunch Length, σ_{s}	cm	5.6	6.3	1	0.5		
Beam Size @ IP	μm	150	75	6	3		
Beam-beam Parameter / IP		0.005	0.02	0.09	0.09		
Proton Driver Power	MW	4 [♯]	4	4	4		

[#]Could begin operation at lower beam power (eg, with Project X Phase 2 beam)

Fermilab 126 GeV Higgs Factory

s-channel coupling of Muons to HIGGS with high cross sections: Muon Collider of with L = 10^{32} cm⁻²s⁻¹ @ 63 GeV/beam (50000 Higgs/year) Competitive with e+/e- Linear Collider with L = 2. 10^{34} cm⁻²s⁻¹ @ 126 GeV/beam

Fermilab Muon Collider - Neutrino Factory Comparison

NEUTRINO FACTORY

February 25, 2013

CRITICAL R&D AREAS

February 25, 2013 Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26, 2013)

🕻 Fermilab

Overview of R&D Areas

- Design Studies
 - Proton Driver
 - Front End
 - Cooling
 - Acceleration and Storage
 - Collider
 - Machine-Detector Interface
 - Work closely with physics and detector efforts

Major System Demonstration

- The Muon Ionization Cooling Experiment – MICE
 - Major U.S. effort to provide key hardware: RF Cavities and couplers, Spectrometer Solenoids, Coupling Coils
 - Experimental and Operations Support

- Technology R&D
 - Normal Conducting RF
 - Vacuum RF Cavities with reduced breakdown rates in high magnetic fields
 - Cavity Materials
 - RF Cavities filled with high pressure gas
 - Superconducting RF
 - Demonstrating good Q_0 performance with Niobium on Copper cavities
 - Performance
 - Fabrication techniques

– Magnets

- High field solenoids for cooling channel application
- 10T dipole design (synergistic with LHC upgrade activities)
- Rapid cycling magnets for high energy hybrid synchrotron
- Shielded magnets for $\boldsymbol{\mu}$ decay in rings
- Target and Absorbers
 - Liquid jet targets capable
 - Capture solenoid technology

R&D Capabilities I (Completed, Current or Underway)

 Target Technology: MERIT Experiment

Fermilab

Liquid Hg jet ⇒ 8MW with 70Hz rep. rate

- Muon Ionization Cooling Experiment (MICE)
 - Cool beams produced with tertiary production mechanism
 - dE/dx energy loss in materials
 - RF to replace *p*_{long}
 - Employs Guggenheim Cooling Channel Technology

Solenoids

Units

Fermilab R&D Capabilities II (Completed, Current or Underway)

- MuCool Test Area (MTA)
 - RF power (12MW @ 805MHz, 4.5MW @ 201MHz)
 - Large-bore 5T superconducting solenoid
 - Cryogenic plant
 - 400-MeV H- beamline
 - Class-100 portable clean room
 - Hydrogen safety infrastructure
 - 805- and 201-MHz cavities
 - Radiation detectors
- Solenoid Test Facility
 - Utilizes Fermilab Central Helium Liquefier (CHL) Facility
 - First MICE CC Coldmass ready for testing

🛟 Fermilab

R&D Activities: Cavity Materials

Breakdown tests with Be and Cu Buttons

- Both reached ~31 MV/m
- Cu button shows significant pitting
- Be button shows minimal damage
- Materials choices offer the possibility of more robust operation in magnetic fields (increased operating lifetime)

🕻 Fermilab

R&D Activities: Vacuum RF

All-Seasons

Cavity (designed for both vacuum and high pressure operation)

- Vacuum Tests at B = 0 T & B = 3 T
 - ~25 MV/m operating gradient in each configuration
- Demonstrates possibility of successful operation of vacuum cavities in magnetic fields with careful design

🛟 Fermilab

R&D Activities: High Pressure RF

- Gas-filled cavity
 - Can moderate dark current and breakdown currents in magnetic fields
 - Can contribute to cooling
 - Is loaded, however, by beam-induced plasma

- Electronegative Species
 - Dope primary gas
 - Can moderate the loading effects of beam-induced plasma by scavenging the relatively mobile electrons

R&D Activities: ____HTS High Field Magnets

Fermilab

BSCCO-2212 Cable -

Long piece-length obtained by hyperbaric fabrication process to reduce bubble formation

Progress towards a demonstration of a final stage cooling solenoid:

- Demonstrated 15+ T (16+ T on coil)
 - ~25 mm insert HTS solenoid
 - BNL/PBL YBCO Design
 - Highest field ever in HTS-only solenoid (by a factor of ~1.5)
- ii)
- Preparing for high field tests utilizing various outsert options (20+ T followed by 30+ T demonstrations)

Multi-strand cable utilizing chemically compatible alloy and oxide layer to minimize cracks. Cable achieving full current density of single strand

February 25, 2013

R&D Activities: Fermilab MICE Magnets

Spectrometer Solenoids @ LBNL 1st SS

- Has reached 100% of target current 2^{nd} SS
- Assembly nearing completion with training and acceptance tests scheduled to begin immediately after 1st unit testing complete
- ⇒ Support MICE Step IV (2014-15)

Coupling Coils

First Coupling Coil cold mass delivered to FNAL from LBNL for testing in new Solenoid Test Facility

⇒ Support MICE Step V/VI (2017-)

Fermilab R&D Capabilities (Continuing and Future)

- Continuing
 - MTA (FNAL): RF cavity R&D
 - MICE (RAL): ionization cooling demonstration
- New possibilities
 - vSTORM (Neutrinos from Stored Muons): Ring instrumentation, energy calibration methods, and R&D beams
 - ASTA (FNAL): Novel cooling techniques: optical stochastic cooling, carbon-based crystal structures
 - FACET II (SLAC): Potential studies with polarized muons

🛟 Fermilab

vSTORM – Physics + Critical Accelerator R&D

Well-understood neutrino source: $\mu^+ \rightarrow e^+ \overline{\nu}_{\mu} \nu_e$

μ Decay Ring:

$$\mu^- \rightarrow e^- v_\mu \bar{v}_e$$

Provides important physics output (v cross sections and sterile v search) as well as critical R&D leverage (ring instrumentation and a beam well-suited for advanced cooling R&D).

At end of straight we have a lot of π s, but also a lot of μ s with 4.5 < P(GeV/c) < 5.5

After 3.48m Fe, we have $\approx 10^{10} \mu$ /pulse in 100 < P(MeV/c) < 300

🕻 Fermilab

Conclusion

- MAP is working towards a 6year Feasibility Assessment to be delivered in 2018:
 - Feasibility of key concepts needed for a Muon Collider and Neutrino Factory
 - Provide the foundation for a facility that can support unsurpassed Intensity and Energy Frontier research
- A robust R&D program will enable an informed decision on the path forward for HEP

An effective muon accelerator R&D program will rely on the availability of high capability test facilities

February 25, 2013