Technologies and Tests for e+e- Circular Colliders: SuperKEKB and Tau-Charm

John Seeman

Snowmass: Accelerator Technologies Capabilities

February 25-26, 2013

SuperKEKB Tsukuba

K. Oide, Y. Funakoshi, Y. Suetsugu, M. Kikuchi, M. Sato, T. Suwada, U. Wienands, M. Sullivan, J. Fox

Super CT Novosibirsk

E. Levichev, P. Piminov, D. Shatilov, A. Bogomyagkov

Super Tau-Charm Tor Vergata-Frascati M. Biagini, S. Tomassini, M. Giorgi, P. Raimondi

Discussion: US Roles, Test Beams, Technologies

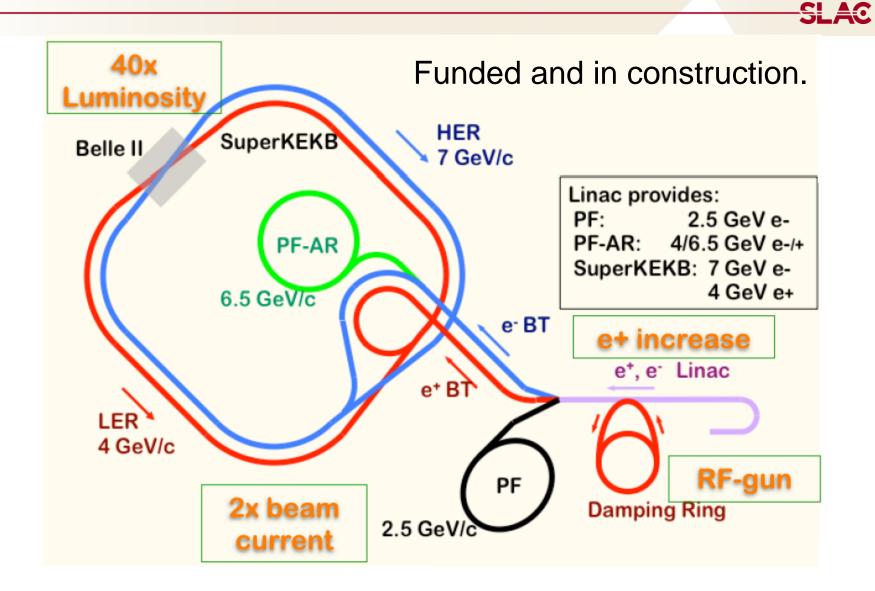
Two ring colliders with one IR work well.

Energy asymmetry ok.

Greater than 1000 bunches per beam can be used.

Bunch-by-bunch feedbacks effective with 4 nsec bunch spacings.

Multi-megawatt continuous RF systems manageable.

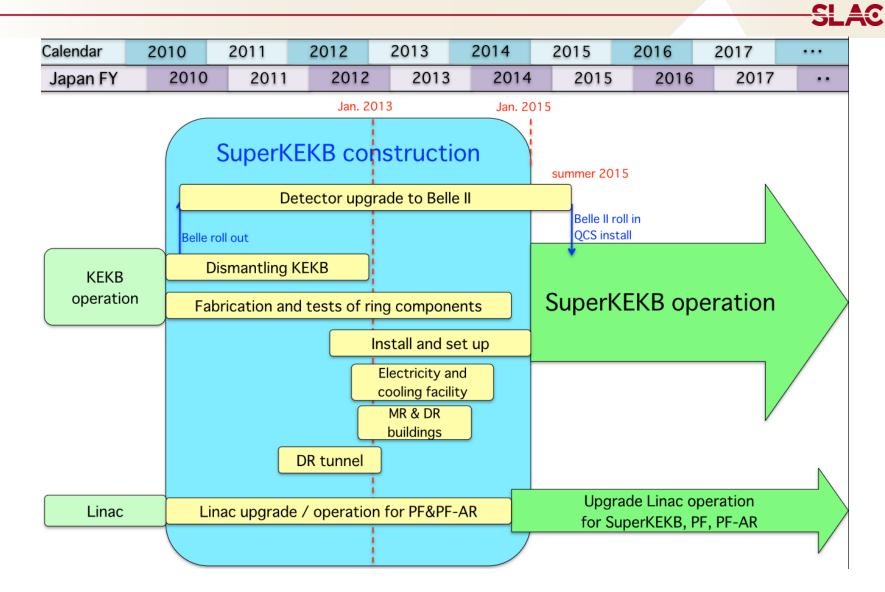

IP collisions with either head-on and crossing angles work.

Low detector backgrounds achievable with ampere beams.

Crab cavities, crab waist, and low emittance tuning can be done. Beam instabilities (ECI, FII, IBS, resistive wall, ...) mostly tamed. High power (10kW/m) vacuum systems can be constructed. Full energy injection

Top-up injection

SuperKEKB Tsukuba: Accelerator Layout



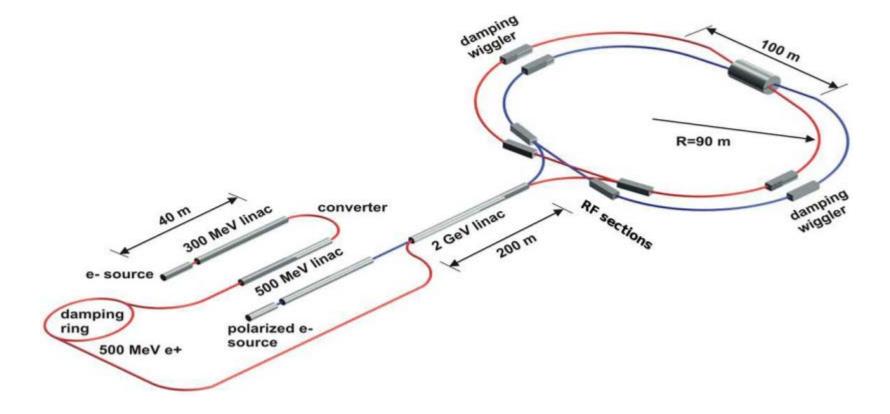
SuperKEKB Tsukuba: Parameters

2011/July/20	LER	HER	unit
E	4.000	7.007	GeV
I	3.6	2.6	A
Number of bunches	2,		
Bunch Current	1.44	1.04	mA
Circumference	3,01	m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/11.5(1.5)	nm/pm
Coupling	0.27	0.28	
β_x^*/β_y^*	32/0.27	25/0.30	mm
Crossing angle	٤	mrad	
α _p	3.25x10 ⁻⁴	4.55x10 ⁻⁴	
σ_{δ}	8.08(7.73)x10 ⁻⁴	6.37(6.31)x10 ⁻⁴	
Vc	9.4	15.0	M∨
σ _z	6.0(5.0)	5(4.9)	mm
Vs	-0.0247	-0.0280	
v_x/v_y	44.53/44.57	45.53/43.57	
Uo	1.87	2.43	MeV
$\tau_{x,y}/\tau_s$	43.1/21.6	58.0/29.0	msec
ξ _× /ξ _y	0.0028/0.0881	0.0012/0.0807	
Luminosity	8x	cm ⁻² s ⁻¹	

-SLAC

SuperKEKB Schedule

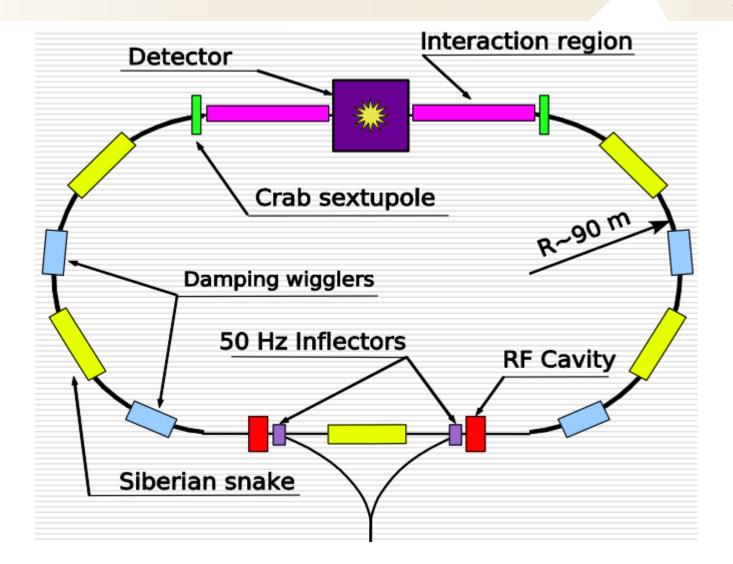
SuperKEKB Rings Components



Potential US-Japan and SLAC-SuperKEKB Collaboration Items

- Collaboration has been already going on
 - Bunch-by-bunch feedback
 - * X-band deflector for beam diagnostics at Linac
 - X-band structure development
 - * Beam dynamics for CSR, beam-beam, etc.
- Possible items for collaboration with SLAC for SuperKEKB:
 - Machine-detector interface, beam background at collision with top-up injection. Collimation schemes and hardware.
 - Low-emittance & high luminosity tuning with high-current collision.
 Beam-beam collision feedback, dithering, etc.
 - Low emittance & high current e+e- injector, from gun through Linac.
 - Commissioning of the e+ damping ring.
 - * e+ source, flux concentrator, as well as beam commissioning of linac to DR.
 - Synchronization of 5 rings and the linac.
 - Alignments for Linac and / or rings.

SLAO


Super CT Novosibirsk: Overall Layout

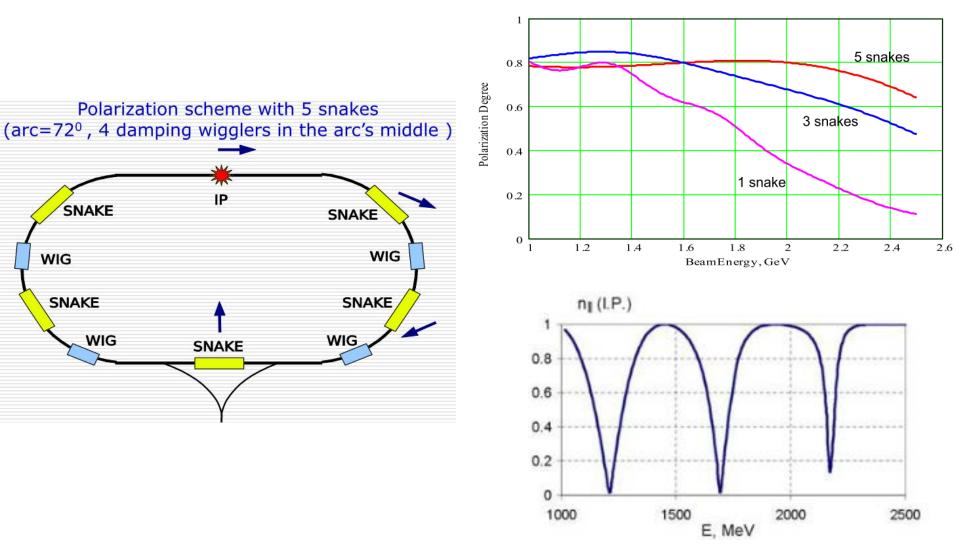
CDR is completed. Seeking funding.

Super CT Novosibirsk: Ring Layout

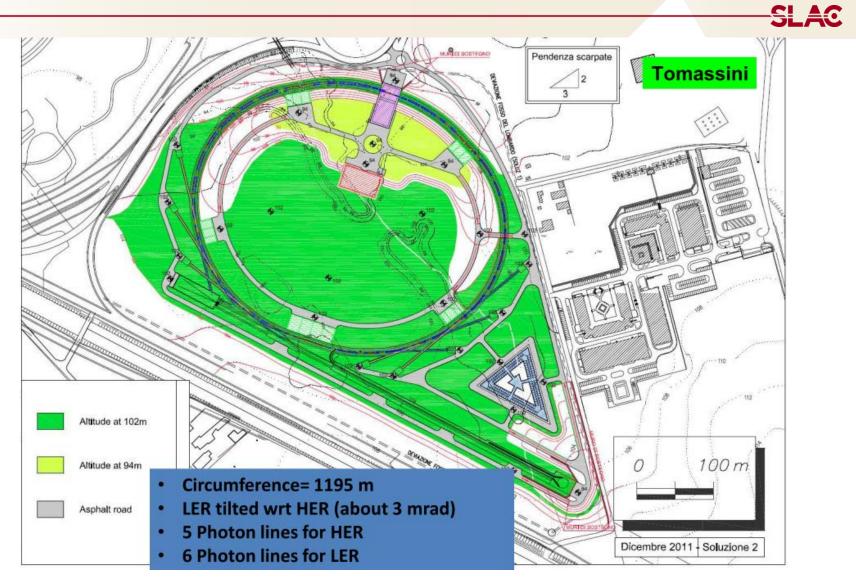
Energy	1.0 GeV 1.5 GeV 2.0 GeV 2.5 G				
Circumference	766.6 m				
Emittance hor/ver	8 nm/0.04 nm @ 0.5% coupling				
Damping time hor/ver/long	30/30/15 ms				
Bunch length	16 mm 11 mm 10 mm 10 mm				
Energy spread	10.1.10-4 9.96.10-4 8.44.10-4		7.38·10 ⁻⁴		
Momentum compaction	1.00.10-3	0·10 ⁻³ 1.06·10 ⁻³ 1.06·10 ⁻³ 1.0		1.06.10-3	
Synchrotron tune	0.007	0.010	0.009 0.008		
RF frequency	508 MHz				
Harmonic number	1300				
Particles in bunch	7·10 ¹⁰				
Number of bunches	390 (10% gap)				
Bunch current	4.4 mA				
Total beam current	1.7 A				
Beam-beam parameter	0.15	0.15 0.15 0.12		0.095	
Luminosity	0.63·10 ³⁵	0.95·10 ³⁵	1.00·10 ³⁵	1.00·10 ³⁵	

Super CT Novosibirsk: Main Collider Features

Two Rings


- Crab waist collisions
- \Box Small Beta Function at IP ($\beta_v \sim 800 \text{ um}$)
- Superconducting wigglers to keep the same damping and emittance in the whole energy range
- High Beam Current
- 5 Siberian Snakes
- Electron Polarization Source
- 2.5 GeV Linac
- 50 Hz Injection Rate

Super CT Novosibirsk: IR quadrupoles


SLAC

QD0 Lens 4.41 Minimal Flux -10.280827 Maximal Flux 3.25 \$6.866730 SC iron yoke twin aperture magnet Number \$30 2.08 Excitation current 1.15 kA Boundary Aperture diam 2 cm 0.92 Gradient 10.7 kGs/cm -0.25 Length 20 cm Print Clip -1.41-2.91 -2.91 -1.75 -0.58 0.58 1.75 Close Prototype of QD0 now is constructed at BINP

Super CT Novosibirsk: Polarization

Tau-Charm Factory at Tor Vergata-Frascati, Italy

Tor Vergata-Frascati Tau-Charm Factory Parameters

		Base Line Low Emittance		High Current		τ/charm			
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)
LUMINOSITY (10 ³⁶)	cm ⁻² s ⁻¹		1		1		1		
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61
Circumference	m	1258.4		1258.4		1258.4		1258.4	
X-Angle (full)	mrad		0	60		60		60	
Piwinski angle	rad	20.80	16.91	29.42	23.91	13.12	10.67	8.00	6.50
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25
ϵ_x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82
ϵ_x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16
σ _x @ IP	μm	7.211	8.872	5.099	6.274	10.060	12.370	18.749	23.076
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092
Σ _x	μm	11.433		8.085		15.944		29.732	
Σ _y	μm	0.050		0.030		0.076		0.131	
σ_L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36
σ_L (full current)	mm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
Buckets distance	#	2		2		1		1	
Buckets distance	ns	4.20		4.20		2.10		2.10	
lon gap	%		2	2		2		2	
RF frequency	MHz	47		476		476		476	
Harmonic number			98	1998		1998		1998	
Number of bunches		46 5.08	6.56	465 3.92 5.06		931 4.15 5.36		931 1.83 2.37	
N. Particle/bunch (10 ¹⁰) Tune shift x		0.0026	0.0040	0.0020	0.0031	0.0053	0.0081	0.0063	0.0096
Tune shift y		0.0026	0.0040	0.0020	0.0031	0.0055	0.0081	0.1000	0.0096
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166
$\sigma_{\rm E}$ (full current)	δE/E					6.43E-04			
CM σ _E	δE/E	5.00E-04		5.00E-04		5.00E-04		5.26E-04	
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79
Total RF Power	MW	16.	.38	12	.37	28.83		2.81	

-SLAC

Tau-Charm Factory at Tor Vergata-Frascati, Italy

SLAC

Assuming that the cm energy should range from J/ Ψ (3100) to Ψ (4415) GeV, with asymmetric beam energies, there are several options (no boost at J/ Ψ) Difficult to keep large currents and have reasonable lifetimes at low energy \rightarrow lower limit 1.3 GeV

Polarization resonances force electron E to be 1.536 or 2.417 GeV

		Pol beam	in red		
Ecm	Resonance	E_LER	E_HER	Boost	Notes
10,58	Y(4S)	4,18	6,700	0,24	SuperB
3,686	Tau	1,3	2,613	0,36	Larger boost but no polarization
		1,405	2,417	0,27	
		1,536	2,211	0,18	
3,770	Charm	1,3	2,733	0,38	Larger boost but no polarization
		1,470	2,417	0,25	
		1,536	2,313	0,21	
4,400	Max E	1,3	3,723	0,55	Larger boost but no polarization
		1,536	2,211	0,18	
		2,002	2,417	0,09	

Tau-Charm Factory at Tor Vergata-Frascati, Italy

Priorities must be defined for optimizing the machine design.

- Luminosity
- Polarization
- Asymmetric option

Status: Design is under revision to be presented to the Italian Government later in the year.

Key Common Facility Features for these e+e- Colliders

Two rings with a single interaction point Crossing angle at the IP with very flat beams (emittance ratio = ~300) Need low detector backgrounds Crab waist collisions Wigglers to reduce damping times and emittances Picometer-vertical and nanometer-horizontal emittances Longitudinal polarized e- beams at the IP with spin rotators Low emittance beam with beam-beam effects Polarized beam with strong beam-beam effects High currents:

Coherent Synchrotron Radiation (CSR) Electron Cloud Instability ECI Fast Ion Instability FII Low impedance vacuum chambers High power vacuum chambers

Key issues: 300 micron scale βy^* , large betas in IR quadrupoles, quadrupoles inside the detector, collision feedback, vacuum chamber design, magnet tolerances, alignment and jitter tolerances, crab cavities, crab waist,

US relevance: LHC, Muon collider, ILC, Higgs factory

Test accelerators/facilities: SuperKEKB, CESR-TA, PETRA-3, vibration stabilization facility

Technologies:

100+ Hz IP dither feedback on luminosity Superconducting magnets Permanent magnets Power supply stability Vibration control Non-linear optics

Key issue: Synchrotron radiation backgrounds, lost particle backgrounds, SR heating of vacuum chambers, radiation damage/lifetime of detectors, sensor occupancy, luminosity measurement.

US relevance: LHC, Muon collider, ILC, Higgs factory

Test accelerators/facilities: SuperKEKB, LHC, lab tests of high power vacuum chambers, lab tests of detector lifetime Technologies:

> IP vacuum pumping Advanced masking Rapid luminosity feedback Detector design

Low Emittances

Key issue: Component tolerances, vibration control, emittance measuring hardware, active feedbacks, field nonlinearities.

US relevance: ILC, Ultimate Storage Ring

Test accelerators/facilities: SuperKEKB, PETRA-3, CESR-TA, NSLS-II, lab tests of x-ray size monitors

Technologies:

300 to1 emittance tuning techniques

Coherent Synchrotron Radiation CSR simulations and

measurements

Fast Ion Instability FII simulations and measurements

Intra-Beam Scattering IBS simulations and measurements

Electron Cloud Instability ECI simulations and measurements

Effects of spin rotators.

Effects of beam-beam interaction

Key issues: Beam stability, high power RF, high power vacuum components, AC wall efficiency, injector capabilities, I> 1 A.

US relevance: LHC, muon collider, muon storage ring, Project X, Ultimate Storage Ring

Test accelerators/facilities: SuperKEKB, CESR-TA

Technologies:

Better bunch feedbacks ECI control IBS mitigations FII mitigations More efficient klystrons High power cavities Longitudinal beam feedback Key issue: Injected polarization, beam lifetime, polarization lifetime, spin rotators, polarization measurements, effect on IP optics, beam-beam effect on polarization.

US relevance: ILC

Test accelerators/facilities: SuperKEKB?, VLEPP-2000?

Technologies:

Siberian snakes

Solenoidal rotators

Beam-beam depolarization diagnostics

Spin manipulation in the Damping Ring and Linac.

e-polarized source

Example: Project Considerations (US-Japan or SLAC-SuperKEKB)

IP feedback on luminosity:

Fast dither x, y and y' (100 Hz) position and angle

Lock in amplifiers for amplitude and phase

All planes at once

Single step or Newton algorithm

Linac beam position monitors (BPM):

Single passage for linac use

Multi-passage for ring use

Present hardware not reliable nor precise enough

Beam collimation:

Moveable jaws like PEP-II design

Low impedance

Multiple stages for effective spray elimination

Accelerator physics:

IP MDI, IP masking

CSR

Beam-beam effect

Commissioning

Bunch-by-bunch feedback:

Circuit design

Power amplifier analysis

Synchronization studies