

Jose Alonso MIT

Accelerator R&D Facilities Workshop

Feb 25, 2013

Accelerator Collaborators and Participants*

- Collaboration Spokespersons:
 - Janet Conrad, MIT
 - Mike Shaevitz, Columbia
- Collaborating Laboratories (Support: Internal and MIT contracts)
 - Laboratori Nazionali del Sud (INFN-LNS), Catania, Italy
 - Luciano Calabretta, Alessandra Calanna, Daniela Campo, Luigi Celona, Santo Gammino, ...
 - Paul Scherrer Institute, Villigen, Switzerland
 - Andreas Adelmann, Jianjun Yang, Marco Schippers, ...
 - RIKEN, Wako, Saitama, Japan
 - Hiroki Okuno
- Industries (Support: Internal)
 - Best Cyclotron Systems, Vancouver BC
 - Bruce Milton, Todd Mawhinney, Francis Labecque, ...
 - IBA, Louvain la Neuve, Belgium
 - Yves Jongen, Willem Kleeven, Michel Abs, ...
 - AIMA, Nice, France
 - Pierre Mandrillon, Gerome Mandrillon

* Principal funding provided by NSF through MIT

Topics

- Decay-At-Rest neutrino experiments
- Accelerator concepts: H₂⁺
- Requirements and challenges
- Progress, Plans and R&D needs

Decay-At-Rest Experiments: 1: Pions from 800 MeV Protons

- Energy comfortably above threshold
- Pions produced at low enough energy to stop before decaying
- π^- absorbed prior to decay
- Well-defined neutrino spectrum
- Mostly devoid of $\overline{\nu}_{e}$

AE^δALUS

- \overline{v}_{e} in primary beam ~10⁻⁴
- Sensitive to appearance of $\overline{\nu}_e$
 - ... oscillation from $\overline{\nu}_{\mu}$
- Detection: Inverse Beta Decay

 $\overline{\nu}_{e}$ + p \rightarrow e⁺ + n

<600 MeV ² too little π^+ production @ 1.0 MV 1500 Plateau" 1250 1000 at Given 750 >1500 MeV 500 energy goes into 250 producing other particles besides π^+ 500 1500 0 1000 at a significant level ntensity V

0.01

0.02

0.03

(need detector with high fraction of free protons: water or liquid scintillator)

0.04 0.05 0.06 Energy, GeV

DAEδALUS Configuration

Accelerator Requirements

- Three "identical" sources
 - 800 MeV protons on target
 - Isotropic neutrino spectra requires greater flux at longer baselines
 - Not quite {r²}, due to increased signal strength
 - Proton power on target (average):
 - Near site 1 MW
 - Mid site 2 MW
 - Far site 5 MW
 - Based on matching data rates from LBNE, and statistics for a ${\sim}10$ year experiment
 - − Peak current: ~10 mA
 - Size and costs must be kept as low as possible!

Implications of Timing Constraints

Typical duty factor for each station: 20%

 Only one machine operating at a time
 Need time off for calibration, background

Concept: H₂⁺ Cyclotrons

- Luciano Calabretta: INFN-Catania
- arXiv: 1107:0652

Status of SRC Concept

RIKEN SRC: Engineering Existence Proof!

RIKEN K2600 SUPERCONDUCTING RING CYCLOTRON

Completed November 2005 - the 140-ton cold mass cooled to 4.5K.

SRC Status

- H_2^+ advantages:
- Lower space charge at injection
- Stripping extraction

Injector Cyclotron: Basis for IsoDAR

Decay-At-Rest Experiments:

2. Beta decay of ⁸Li from 60 MeV protons

- v_{e} oscillation experiment at very short baseline
- Sterile neutrino search
 - $\Delta m^2 \sim 1 \text{ eV}^2$, $\lambda < 10 \text{ meters}$
 - Can see oscillations within detector!

Injector Cyclotron Configuration

• Compact, axially-injected, septum extracted

Challenges

- Space charge at axial injection
 - Being addressed this summer at Best Cyclotron Systems, Vancouver BC

Challenges

• H₂⁺ Ion source: quenching vibrational states

p e- p

Excited during ionization by different proton spacing for $\rm H_2$ and $\rm H_2^+$

NOT a problem for IsoDAR

Collaborating with ORNL Atomic Physics BUT: Test Stand, connected to Holifield is being shut down

Franck-Condon distr.

20

Summary (1): Observations

- H₂⁺ cyclotrons can be effective neutrino sources
 - Compact, cost-effective, modular
 - Other applications: Isotopes, ADS
- Best available beam-dynamics simulations indicate no show-stoppers
- Engineering studies and field experiences are encouraging

Summary (2): Roadmap

- Axial Injection Line and Central Region development
 - Tests in Vancouver, Spring/summer 2013
 - MIT/Catania/Best collaboration
 - Point to final design of Injector central region
- Injector Cyclotron: Unit #1
 - Deployment of IsoDAR experiment
 - Requires further simulations, engineering studies
 - Looking for collaboration with private industry
 - … producing world-class physics!
- Ring Cyclotron development
 - Need further simulations, engineering studies
 - Need prototyping of sector magnet
 - Studies of beam-loss mitigation (vacuum, injection, extraction)
- H_2^+ ion source development
 - Achieving required current levels of H_2^+ (~40-50 mA CW)
 - Quenching of vibrational states (ORNL has capabilities that may disappear!)
 AEδALUS

Extra Slides

Note: Bibliography of DAEδALUS publications:

http://www.nevis.columbia.edu/daedalus/ docs/publications.html

Inverse Beta Decay

$$v_e + p \rightarrow e^+ + n$$

- (Relatively) high cross section
- Delayed coincidence provides excellent background suppression

~ 2 µs time to neutron capture (helps if detector is Gd doped)

EδALUS

