

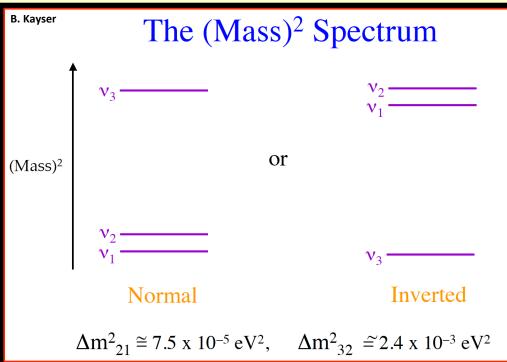
Neutrino Factory and nuSTORM

"Snowmass Preparatory mini-Workshop on Frontier Capabilities: Accelerator Technology Test Beds and Test Beams."

Contents:

Neutrino Factory

nuSTORM


Elements of a staged programme

Standard Neutrino Model:

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$\begin{bmatrix}
 e^{i\alpha_1/2} & 0 & 0 \\
 0 & e^{i\alpha_2/2} & 0 \\
 0 & 0 & 1
\end{bmatrix}$$

 Three mass states linked to three flavour states via unitary mixing matrix;


- Additional, sterile, states conceivable:
 - Would imply:
 - 3-neutrino mixing matrix not unitary

Neutrino Factory and nuSTORM:

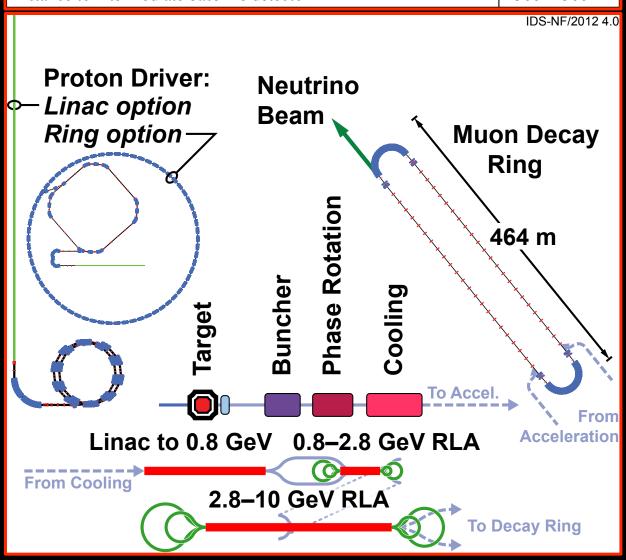
Neutrino Factory

The SvM measurement programme:

- Looking beyond MINOS, T2K, NOvA, DChooz, Daya Bay, Reno, ...
 - $-\theta_{13}$ will be very well known
- Therefore future programme must:
 - Complete the "Standard Neutrino Model" (SvM):
 - Determine the mass hierarchy
 - Search for (and discover?) leptonic CP-invariance violation
 - Establish the SvM as the correct description of nature:

- Determine precisely the degree to which θ_{23} differs from $\pi/4$
- Determine θ₁₃ precisely
- Determine θ₁₂ precisely
- Search for deviations from the SvM:
 - Test the unitarity of the neutrino mixing matrix
 - Search for sterile neutrinos, non-standard interactions, ...

Neutrino Factory:


- Optimise discovery potential for CP and MH:
 - Requirements:
 - Large v_e (v̄_e) flux
 - Detailed study of sub-leading effects

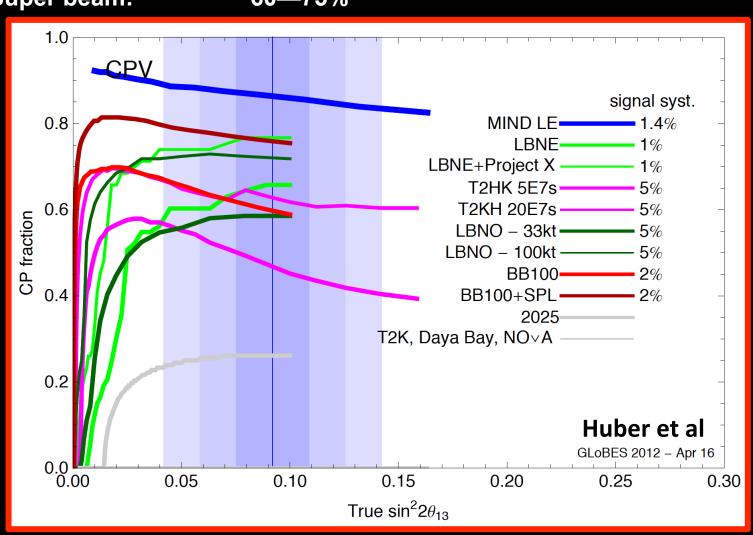
- Unique:
 - (Large) high-energy
 v_e (v̄_e) flux
 - Optimise event rate at fixed L/E
 - Optimise MH sensitivity
 - Optimise CP sensitivity

Stored $\mu^- \rightarrow e^- v_\mu \overline{v}_e$		
Disappearance	Appearance	
$\stackrel{-}{\nu_e} \rightarrow \stackrel{-}{\nu_e} \rightarrow e^+$	$\bar{\nu}_e \rightarrow \bar{\nu}_\mu \rightarrow \mu^+$	
	$\stackrel{-}{\nu_e} \rightarrow \stackrel{-}{\nu_\tau} \rightarrow \tau^+$	
$\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$	$v_{\mu} \rightarrow v_{e} \rightarrow e^{-}$	
	$v_{\mu} \rightarrow v_{\tau} \rightarrow \tau^{-}$	

All channels available at the Neutrino Factory

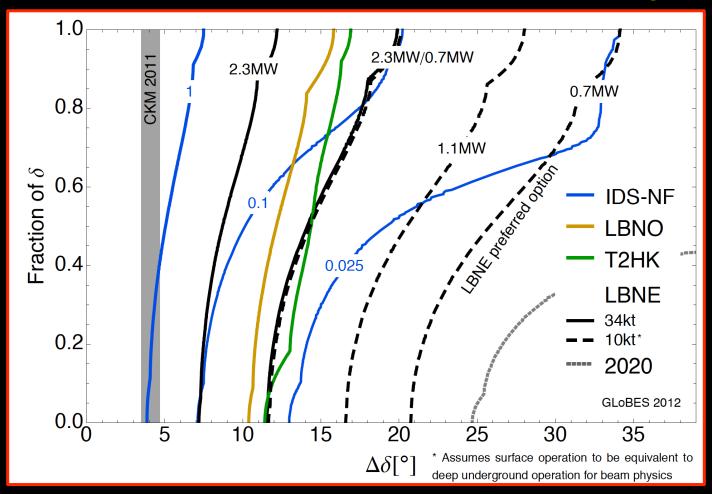
	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Distance to intermediate baseline detector	1 500–2 500 km

P. Coloma, P. Huber et al, IDS-NF#8: https://www.ids-nf.org/wiki/GLA-2012-04-18/Agenda


Discovery reach:

Discovery reach at 3σ:

Neutrino Factory: 85—90%


• Beta beam and SPL: 70—80%

• Super beam: 60—75%

Coloma, Huber, Kopp, Winter arXiv:1209.5973

Comparison:

- Benefit of luminosity:
 - Solid blue lines show effect on precision of scaling luminosity from baseline 10²¹ decays per year
 - Potential for definition of staged upgrade programme

Accelerator challenges:

Proton driver:

- 4 MW; 5 < Ep < 15 GeV; bunch length 1—3 ns
- Linac (CERN, FNAL) and ring (RAL, JPARC) options: Progress: costing based on SPL

Pion-production target:

- Baseline: liquid mercury jet
- Options: powder jet or solid
- Progress: particle shielding, magnetic lattice

Muon front end:

- Chicane (new) to remove secondary hadrons:
 - Bent solenoid transport & beryllium absorber
- Buncher & rotator:
 - Progress: lattice revision in response to engineering study
- Cooling:
 - · Baseline: solenoid transport, LiH absorber
 - Options: bucked coils or high-pressure H2
 - Progress: lattice revision in response to engineering study

Rapid acceleration:

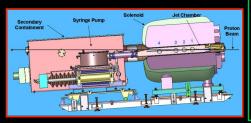
- Two options considered for acceleration to 10 GeV:
 - Linac, RLA I and RLA II;
 - · Linac, RLA I and FFAG
- Choice based on cost and performance estimates

Proton driver:

- Development of high-power, pulsed proton source
 - FETS; PIXIE; [R&D programme outlined by Prebys]
 - Large charge, very short bunches

Pion-production target:

- MERIT experiment at CERN proved principle of mercury jet target
 - Need to distinguish pre-construction development from proof of principle


Muon front end:

- MuCool programme at FNAL:
 - Study of effect of magnetic field on high-gradient, warm, copper cavities;
 - · Critical programme
- MICE experiment at RAL:
 - Proof of principle of ionization-cooling technique
 - **Critical programme**
- RF power sources (e.g. Diacrode) at LANL:
 - Some work at LANL, however, cost driver for the Neutrino Factory
 - Deserves more attention

Rapid acceleration:

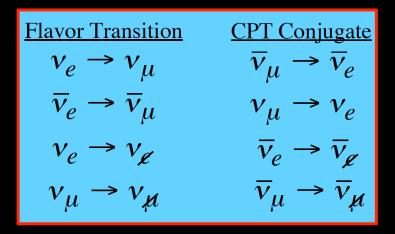
- EMMA experiment at DL:
 - Proof of principal of non-scaling FFAG technique;
 - Novel technology allows circular acceleration without magnet ramp
- Superconducting, 201 MHz resonators at Cornell:
 - Some work at Cornell, however, significant part of cost of muon acceleration
 - Deserves more attention

Baseline target: proof of principle: MERIT:

- 'Disruption length': 28 cm
- 'Refill' time: 14 ms
 - Corresponds to 70 Hz
- Hence:
 - Demonstrated operation at:
 - 60 kJ × 70 Hz = 8 MW
- 20 m/s liquid Hg jet in 15 T B field
- Exposed to CERN PS proton beam:
 - Beam pulse energy = 115 kJ
 - Reached 30 tera protons at 24 GeV

MuCool: cavities in magnetic field 201MHz cavity waveguide 5T solenoid

Electron Model of Muon Acceleration (EMMA)



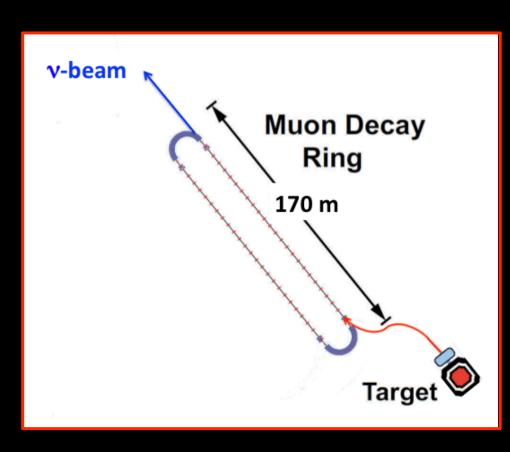
Neutrino Factory and nuSTORM:

nuSTORM

What we need to measure:

- Present, inconclusive, information from $v_e \rightarrow V_X$ and $v_{\mu} \rightarrow V_X$ transitions
- Ideally, study:

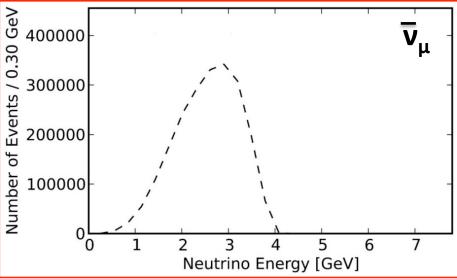
and

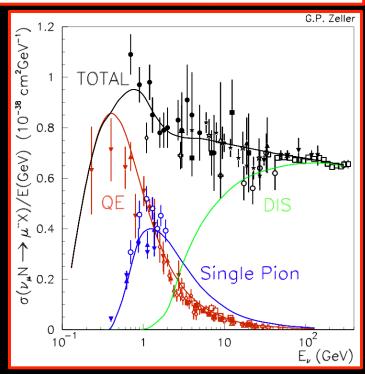

- Determine neutral current rate
 - oscillation to steriles will change neutral current rate
- Study $v_e N$ and $v_\mu N$ scattering
 - including hadronic final states to eliminate background uncertainties

Entry-level Neutrino Factory:

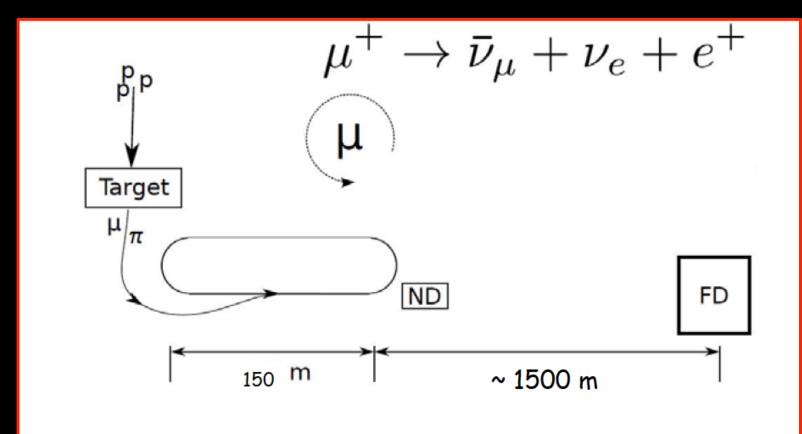
Known technology

Concept:

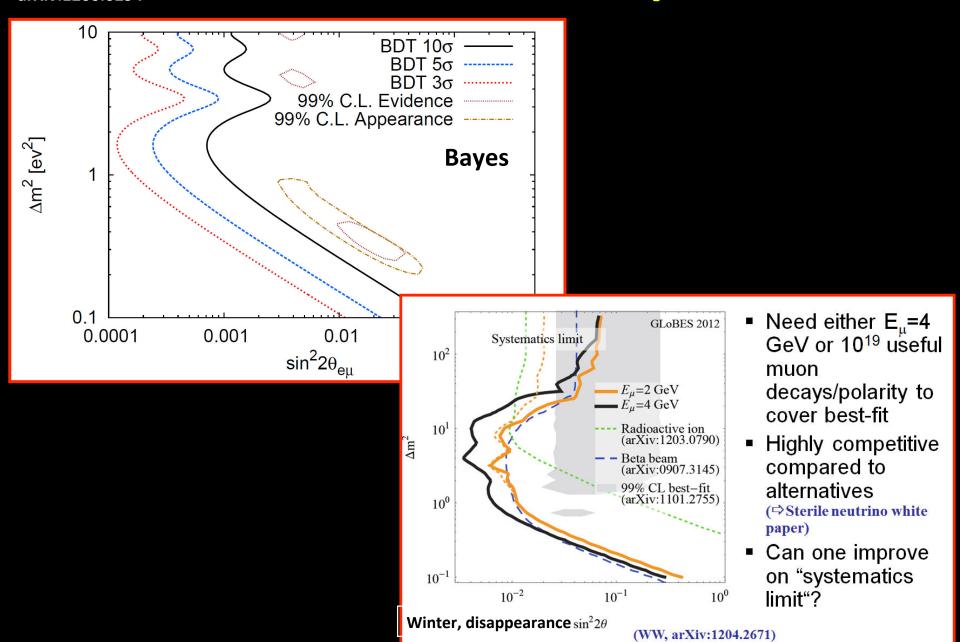

- 100 kW Target Station
 - FNAL:
 - 60 GeV protons from MI in PIP era
 - CERN:
 - 100 GeV protons from SPS post Linac4
- Target and collection:
 - "Heavy metal"
 - Optimization on-going
 - Horn collection baseline
 - · Li lens has also been explored
- Collection/transport, two options:
 - Stochastic injection of π
 - Kicker with $\pi \rightarrow \mu$ decay channel
- Decay ring
 - Large aperture FODO
 - Racetrack FFAG
- Instrumentation
 - BCTs, mag-Spec in arc, polarimeter
- Neutrino detectors:
 - Magnetised iron calorimeter (SuperBIND);
 - Suite of near detectors for cross-section programme


Neutrino characteristics	Fermilab	CERN
Aimed neutrino energy [GeV]	1.0 to 3.0	1.0 to 3.0
Flux measurement precision [%]	1.0	1.0
Protons on target (POT)	10^{21}	2.310^{20}
Useful μ decays [10 ¹⁸]	1.00	100/60 = 1.67
Production, horn and injection		
Target (Ta) diameter/length [m], material	0.01/0.21	-/-
Pulse length [μ s]	1.0	10.5
Proton energy [GeV/c]	60	100
Pion energy [GeV/c]	$5.0 \pm 10\%$	$5.0 \pm 10\%$
Horn diameter/length [m]	- / 2.0	-/-
Reflector diameter/length [m]	-	-/-
Current Horn/Reflector [kA]	300	-/-
Estimated collection efficiency	0.8	0.8
Estimated transport efficiency	0.8	0.8
Estimated injection efficiency	0.9	0.9
Acceptance [mm rad]	2.0	2.0
π/pot within momentum acceptance	0.11	$0.11 \times \frac{100}{60} = 0.187$
Length of target [m]	0.21	0.21
Distance between target and horn [m]	inside	inside
Length of horn [m]	2.0	-
Distance between horn and injection [m]	20	20
The muon storage ring		
Momentum of circulating muon beam [GeV/c]	3.8	3.8
Momentum of circulating pion beam [GeV/c]	$5.0 \pm 10\%$	$5.0 \pm 10\%$
Circumference [m]	350	350
Length of straight [m]	150	150
Ratio of Lstraight to ring circumference $[\Omega]$	0.43	0.43
Dynamic aperture, A _{dyn}	0.7	0.7
Acceptance [mm rad]	2.0	2.0
Decay length [m]	240	240
Fraction of π decaying in straight (F _s)	0.41	0.41
Relative μ yield $(A_{dyn} \times (\pi \text{ per POT}) \times F_s \times \Omega)$	0.014	
Detectors		
Distance from target [m]	20/1600	300/1800-2700

nuSTORM x-section measurement potential:



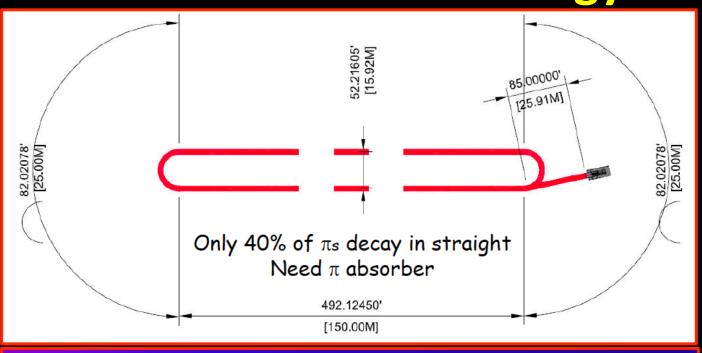
- Above (for stored μ⁺):
 - nuSTORM event rates/100T at near detector 50 m from straight with μ^+ stored
- Right:
 - State of the art:
 - Almost no v_e measurements

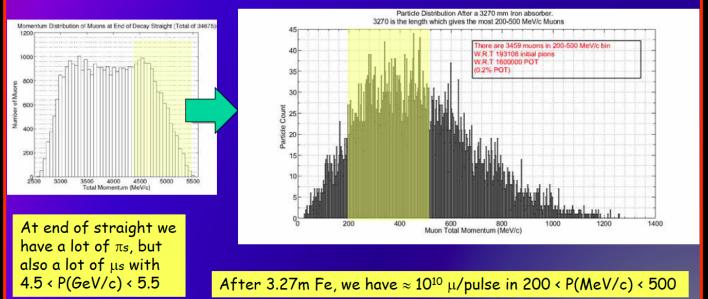

Sterile neutrino search concept:

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu 4}|^2\sin^2(\frac{\Delta m_{41}^2 L}{4E})$$

nuSTORM: performance:




Implementation, at FNAL:

- Benefits from existing extraction tunnel;
- Ideal baseline from storage ring to D0 assembly building:
 - Space and infrastructure for SuperBIND and LAr detector;
- Space and access for near detector

Technology test-bed:

Elements of a programme

Elements of a staged programme:

- Neutrino Factory: the facility of choice for the study of neutrino oscillations:
 - Best sensitivity
 - Best precision
- But, stored muon beams have not yet been demonstrated to be capable of serving a world-class neutrino programme:
 - Require to:
 - Demonstrate (sustainable) ionization cooling:
 - MICE to Step VI
 - Demonstrate:
 - High-gradient warm RF in presence of magnetic field (MuCOOL)
 - Mastery of 201 MHz superconducting RF technology
 - Complete IDS-NF
 - Including articulation of a plausible staging scenario
 - Establish a first, realistic, scientifically first-rate neutrino experiment based on a stored muon beam
 - nuSTORM:
 - Will serve the neutrino programme by making unique $v_e N$ and $v_\mu N$ measurements;
 - Will provide decisive information on the existence of sterile neutrinos; and
 - Provide a test-bed for:
 - » 6D cooling proof of principal
 - » Storage-ring diagnostics, muon-beam handling, ...