Capture Solenoid Inner Shield

Heat & Radiation Shield

Yusuke UCHIYAMA

Feb 19, 2024 COMET-Mu2e target collaboration @Fermilab

The CS inner shield

2024/2/19

To shield radiation from the target ■ especially to protect the SC coil of CS from quench by heat load and from radiation damage.

Necessary shielding power depends on the beam power. ⇒ Its shielding power would determine the available beam power in the experiment. Two-step strategy of COMET → upgrade in the 2nd phase

 \Rightarrow must be exchangeable after Phase I (radio-activated).

Is placed in the target volume (vacuum), provides interface for target system, and supports it

Top view

Base design for Phase I is w/ SST.

- An option to use **Cu** for high-rad region, depending on available budget.
- For Phase II, W is necessary, which costs too much and has many technical challenges.

Start production of SST part in FY2024

- □ Its design is almost fixed.
- Now we are finalizing the design of interface and exchange scenario.

Rad. Shield	Neutron Fluence [10 ²⁰ n/m ²]	Energy Deposit [kGy]	DPA [10 ⁻⁷ DPA]	Energy Deposit (local max) [mW/kg]	Beam Power Max [kW]
Threshold	10	1000	4000	4.0	
W	11	52	0.8	4.0	16.52
Cu	3.4	52	34	4.0	2.02
S316	3.1	52	35	4.0	1.53
No shield	0.1	52	2.3	4.0	0.12

Threshold : n<10²¹ n/m2, ED<<1MGy, 4mW/kg, DPA<4x10⁻⁴ Note1 : Above numbers are picked up from maxmum area. Note2 : Due to beam spill structure, heat generation (energy deposit [mW/kg]) becomes instantaneously 5 times larger. By MARS simulation

Installation/extraction method

Design the system to be exchangeable after irradiation

- Minimize radiation exposure to people
- □ with space limitation in the area
- & minimizing the cost

Radiation calculation with PHITS

2024/2/19 YUSUKE UCHIYAMA

PHITS simulation

2024/2/19 YUSUKE UCHIYAMA

Large aperture pillow seal

Bury the shield in the dump

Reuse the shielding materialwhich are highly radio-activated.

Presented our design of CS inner shield

■ An important vicinity of high-power targetry in both Mu2e & COMET

We plan to start construction in this year

■ Final engineering design is underway

considering the given budgetary constraint

Any collaborations are welcome

■ starting with exchanging information.

■ We need an upgrade towards Phase II.

Mu2e Heat & Radiation Shield in TDR

Figure 4.167. Section view of the HRS. Bronze pieces are shown in light blue, purple and red. A stainless steel liner surrounds the bronze on all sides and the vessel holds 600 gallons of water.

2024/2/19 YUSUKE UCHIYAMA

Figure 4.168. Exploded view of the HRS showing the stainless steel liner.

mW/g@2.75e+12 p/s(3.52kW)