Swapping Quantum-Classical Coexistence
Experiments at Fermi
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Characterization of current system

Coinc. rate A+D (per second)

1. Spent first few weeks trying to re-create Caltech’s old results
when they worked with this system
- A lot of debugging various things at first
= have characterized heralding efficiencies,
entanglement visibility, HOM interference
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HOM dip = Visibility ~ 65 +/- 5%
Caltech was able to get ~¥90%, so we are still
investigating more optimization
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Experiments over 10 km of fiber

We are beginning to do some coexistence experiments over ~10 km of spooled fiber

Step 1: entanglement distribution to the BSM node over 10.6 km fiber

Study the parameters in which Caltech was able to achieve good swapping fidelity to predict how noise
may impact system
- > filter bandwidth for indistinguishability, mean photon pair numbers for multi-photon effects, ...,
as a function of classical power levels and classical source wavelength

/\/\ Filter

Classical

Entangled Photon 10.6 km
. Receiver

Pair Source 1 @
=7
CW laser

Classical source

Filter
Charlie (BSM)




Coincidence detection with long time delays

1. To perform coincidence detection over longer fibers and large time delays between each photon,
- need to allow the time-tags of the photons to have large delays to match up coincidences with correct
time slot
2. Previous data collection only allowed small delays using hardware delay of time-tagger
=> We have implemented software delay feature of Swabbian time-tagger to allow for delaying
each channel by arbitrary amounts
—> previously limited to ~nanosecond delays = now allow arbitrary delay (currently doing ~51 ps)
—> added into GUI data collection system

Record multi-photon coincidences
with software delay of time-tags
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Modified Bell state analyzer for 10-km and coexistence

1. Allowing coexistence with WDMs
i. Added in WDMs to de-multiplex classical light and also provide high isolation of the classical light

2. Polarization control:
i.  Previous system had polarization maintaining fiber throughout entire system
- Not compatible with long distance non-PM fiber links
ii. Added in a FPC+PBS combination before a PM 50:50 splitter
—> guarantees polarization indistinguishability, polarization rotations should only impact rates (not fidelity)

Old setup New BSM setup
(PM fiber from source to BSM) Classical receiver
1536 L,
FBG 0-band/C-band
FromAlice g®  50:50 ' WDMs
- (PM) S0 IS0

From Bob

PBS 0-band/C-band
WDMs

ISO ISO
PM fiber

FBG L d FBG
2 Classical receiver



Entanglement Distribution with Coexistence

First coexistence experiment:

- Test impact of coexisting 1310-nm classical light on entanglement distribution to BSM

- Investigate different filter bandwidths and mean photon pair numbers as a function of 1310-
nm classical power levels
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Polarization drift induced intensity changes

10 km (Pol. Drift)

Saw about 20% variation in singles rates in first experiments due
to polarization drift over time (~1.5 hours)

10-km channel
Source

Short term solution = tape all fiber down more, should be okay for
“local channel” initial experiments

Long-term solution = monitor other PBS port as feedback to

% change in singles due to, pol. drift

100 % s = electronic FPCs to keep singles counts minimized (i.e. maximizing
SIS rates in other port)
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Varying mean photon pairs/pulse with different classical power levels

- First measured coincidence to accidental ratio for photon pair source (not time-bin) as a function of mean photon
pair/pulse at different received 1310-nm power levels
- Filter BW =100 pm
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Entanglement Visibility vs. 1310-nm power

Switched to double pulse, measured Z-basis visibility for two different filter bandwidths (100 pm and 60 pm)

K = 0.01 pairs/pulse K = 0.008 pairs/pulse
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Based on this, we are confident that we should be able to perform swapping with coexistence
without a large hit on fidelity if we use an optimized system




Next steps:
New classical sources

Want to investigate various possible
coexistence sources

- Beginning with 1310-nm laser that was
used in previous time sync experiments

- Bought 1270-nm SFPs capable of 10
Gbps classical data

- Should have lower Raman noise
compared to 1310 nm

- Will eventually implement 10 Gbps
classical channels alongside swapping
signals

Quantum signal = 1536 nm
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Next steps: move towards swapping over 20 km

Go back to see if we can optimize HOM interference visibility
Try swapping in e/l basis with coexistence over 10 km+10 km, should be easier to manage
Investigate how including the 10-km may impact arrival time at the BSM node
Explore options in how to increase rates via getting lower loss FBGs?
- Note: time-bin entanglement distribution coexistence has not been studied yet
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