VD – HD Comparison F. Galizzi, C. Gotti, F. Terranova

SETUP Vertical-Drift Coldbox – January 2024

- CAEN DT5730SB (500 MHz 2 ns/tick)
 - VD: DVDM and warm stage
 - HD: DMEM and warm stage
- DAPHNE V2 (62.5 MHz 16 ns/tick)
- LED: 365 nm and 275 nm
 - The 365 nm shows a spread in time when plotting an average waveform -> broader rise and fall times
- SiPM: FBK TT operated at 32.5 V (5.5 over-voltage)
- VD Coldbox @ Neutrino Platform

Breakdown Voltage

To compare the gain of the two boards we have to guarantee that the SiPMs are working at the same overvoltage.

In the following, M1-VD plots are on the left and M2-HD ones one the right.

- Fit : $G = m \times V_{Bias} + q$
- VD : $V_{br} = 27.0 \pm 0.6$ V (left)

Federico Galizzi

HD : $V_{br} = 27.0 \pm 0.2$ V (right)

INFŃ

M1-VD DVDM – cold and warm stages Undershoot: 1.3% Rise time: 140 ns Fall time: 1'420 ns

Federico Galizzi

INFŃ

BICOCCĂ

Waveform

Waveform selection

Calibration

I select waveforms with no light in the pre-trigger and with an amplitude within the range of the LED pulses.

In this way I lose around the 6% of the statistics, mostly in the tails of the calibration spectrum

- Irrelevant for SNR estimations
- Useful to compute the RMS of the noise

Signal to Noise ratio

Bias 32.5 V – LED 275 nm – run 170

The SNR strongly depends on the integration window's width (see plot).

The X-axis of the calibration spectrum is not the total amount of charge of the signals!

To cross-check the results, Dante and I agreed on a set of windows to use.

The integration starts at tick #4070*, a bit before the trigger.

• 1 tick = 2 ns

*In this run we took 10k tick waveforms

Analysis to have a more reliable estimation of the dynamic range:

- → Plot the amplitude of the waveforms vs. their integrals (#photons vs. #photons)
- → Linear fit in the intermediate range
- → Discard the point that too far away from the fit function ...

LED and linearity

Scan in LED intensity and zoom

The number of detected photons vs the LED voltage is not linear -> no way to use it as cross-check

The fitting procedure looks reasonable

Dynamic range

Dynamic range estimated as $\frac{Saturating wf's amplitude}{s.p.e.amplutide}$ -> VD = 2140 ph. | HD = 1630 ph.

This methond doesn't take into account distortions and could be affected by an over/under estimation of the s.p.e. amplitude (done by averaging s.p.e. waveform candidates)

New estimations -> VD = 2050 ph. | HD = 1700 ph.

DAPHNE

Intro

We had a fistfult of run where membrane modules were read using DAPHNE.

- → No fine tuning
- → Few runs with reasonable dynamic range
- No LED scans
- → Large noise in HD channel in the last runs
- → ...

INFŃ

Waveforms

How they look like

Average and undershoot

LED data

Averages and undershoot

Results in a nutshell

M1 VD – M2 HD comparison

RUN	Digitizer	Module	RMS [ADC]	SNR	SPE Ampl [ADC]	DR	DR ideal				
170	CAEN	M1-VD	3.0	5.2	6.9	2050	11				
170	CAEN	M2 – HD	4.8	7.4	8.8	1700	11				
24062	DAPHNE	M1-VD	2.4	3.7	8.2	920	1590				
24062	DAPHNE	M2 – HD	3.6	4.0	7.5	1040	1630				

The best we observed (short integration window)

The best we achieve having set the offset according to the undershoot

The only one with reasonable noise, attenuation and dynamic range

INFŃ

Results in a nutshell

M1 VD – M2 HD comparison SPECRTRA

M1-VD Digitizer Inttegration window 4070-4600 ticks

M2-HD Digitizer Inttegration window 4070-4600 ticks

Federico Galizzi

Results in a nutshell

M1 VD – M2 HD comparison SPECRTRA

M1-VD Daphne - Attenuation 1925 Integration window 1015-1065 ticks

Big big table M1 VD – M2 HD comparison

RUN	Digitizer	Module	Attenuation	RMS [ADC]	SNR	SPE Ampl [ADC]	DR	DR ideal
170	CAEN	M1-VD		3.0	5.2	6.9	2050	11
170	CAEN	M2 – HD	П	4.8	7.4	8.8	1700	H
24062	DAPHNE	M1-VD	1925	2.4	3.7	8.2	920	1590
24062	DAPHNE	M2 – HD	1925	3.6	4.0	7.5	1040	1630
24089	DAPHNE	M1-VD	1330	4.4	8.6	21.4	310	606
24089	DAPHNE	M2 – HD	1330	>16	4.4	20.5	350	592
24097	DAPHNE	M1-VD	1860	2.6	3.7	9.4	800	1390
24097	DAPHNE	M2 – HD	1860	>6.5	3.5	8.7	890	1390
24098	DAPHNE	M1-VD	1330	4.7	7.7	20.5	320	635
24098	DAPHNE	M2 – HD	1330	>15	4.8	20	360	610

Federico Galizzi

MILANO RICOCCA

HD	Run	Int win	erase V	Bias	Attenuation	mu0	emu0	Gain	eGain	s0	es0	SNR	SPE	U %	Baseline	DR	DR Ideal	RMS	Rise	Fal	J
CH1	24037	2515-2570	0 ?		600	-14	8	2103	4	1 306	1	1 6.87254	9 62	2 34	5275	85.080645	197.20751		1	176	560
		2519-2590	0 ?		600	-7	9	2312	4	1 346	1	2 6.682080	9 62	2 34	5275	85.080645	197.20751		1	176	560
CH 21	24062	1020-1070	1500	32.5	1925	0	2	290		I 73		1 3.972602	7 7.9	5 34	7782	1037.6	1630.2488	3.6	6 1	44	560
		1010-1085	1500	32.5	1925	1.5	2.8	308	2	2 95		2 3.242105	3 7.5	5 34	7782	1037.6	1630.2488	3.6	6		
	24089	1020-1070	1500	32.5	1330	2.9	3.7	709	2	2 162		3 4.376543	2 20.5	5 35	7180	350.2439	592.01445	16?	1	44	560
		1005-1085	1500	32.5	1330	14	6	741	4	1 214		5 3.462616	3 20.5	5 35	7180	350.2439	592.01445	16?			
	24097	1020-1070	1500	32.5	1860	0.6	2.3	309		88		2 3.511363	6 8.7	35	7745	890.22989	1394.9766	6.5?	1	160	560
		1010-1085	1500	32.5	1860	0.8	4.5	331		2 118		3 2.805084	7 8.7	35	7745	890.22989	1394.9766	6.5?	1	60	560
	24098	1020-1070	1500	32.5	1330	2.4	3	706	2	2 146		3 4.835616	4 20	35	7190	359.5	606.81481	15	5 1	44	544
		1010-1085	1500	32.5	1330	16	6	752	;	3 191		4 3.937172	3 20	35	7190	359.5	606.81481	15	5 1	144	544
VD	Run	Int win	erase V	Bias	Attenuation	mu0	emu0	Gain	eGain	s0	es0	SNR	SPE	U %	Baseline	DR	DR Ideal	RMS	Rise	Fal	l
CH 26	24037	2515-2570	0 ?		600	-23	5	1790	2	2 141		5 12.69503	5 62	25.806452	3950	63.709677	210.05128		1	112	672
		2510-2580	0 ?		600	-24	5	1820	:	2 153		5 11.89542	5 62	2 25.806452	3950	63.709677	210.05128		1	112	672
CH 36	24062	1015-1065	1500	32.5	1925	0	1.5	249		67		4 3.716417	9 8.2	25.609756	7555	921.34146	1590.6796	2.4	Ļ	64	752
		1010-1080	1500	32.5	1925	4	3	259		2 88		2 2.943181	3 8.2	2 25.609756	7555	921.34146	1590.6796	2.4	L .	64	752
	24089	1015-1065	1500	32.5	1330	-1	1.6	632		I 73		1 8.657534	2 21.4	26.3	6635	310.04673	606.18169	4.4	Ļ	64	752
		1010-1080	1500	32.5	1330	0	2	654		80		2 8.17	5 21.4	26.3	6635	310.04673	606.18169	4.4	L I	64	752
	24097	1015-1065	1500	32.5	1860	1.3	2.4	286		86	1	.6 3.325581	4 9.4	25.3	7495	797.34043	1391.0445	2.6	5	64	752
		1010-1080	1500	32.5	1860	0.6	2.7	287	2	92		5 3.119565	2 9.4	25.3	7495	797.34043	1391.0445	2.6	6	64	752
	24098	1015-1065	1500	32.5	1330	-2.3	1.5	627		81	1	.3 7.740740	7 20.5	5 25.8	6645	324.14634	635.30963	4.7	7	64	752
		1010-1080	1500	32.5	1330	0.7	1.9	650		97	1	.5 6.701030	9 20.5	5 25.8	6645	324.14634	635.30963	4.7	7	64	752

INFN

MILANO RICOCCA