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BELFEM: Motivation and Project Goals

[Source: 10.1088/1361-6668/abb8c0]

CORC®

[Source: 10.1088/0953-2048/28/6/065007]

VIPER

• quasi-magnetodynamic modeling 
• understand electromagnetic behavior of cables 

• coupled thermal modeling 
• thermal behavior and physical coupling with EM 
• quench behavior 

• other phenomena 
• current sharing 
• mechanical behavior 
• …

want ability to model: 
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H-ɸ formulation: Fundamentals

Solid Model 
•  got momentum in late 2010s to early 2020s 
•  very robust formulation 
•  significantly reduced degrees of freedom in non-
conducting domains 

➡ very high performance gain 
➡ ideal for large 3D models! 

 Thin-Shell Model 
•  first published in 2022 
•  can resolve individual layers of HTS tapes 

➡ideal for current sharing and quench investigations

Faraday’s law Ampére’s law

Recipe: 
•  develop weak form around Faraday’s law 
•  use 𝜹h as test function 

•  substitute e with Ohm’s and Ampére 

• for non-conducting region, define
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H-ɸ formulation: Weak Forms

Conducting Region

Non-Conducting Regions

damping stiffness boundary

damping boundary

0
substitute

•  traditionally, the ɸ-formulation is based on the Gauß law (∇B=0), we, however, use Faraday ’s law  
→ better convergence since same physical equation for all domains! 

•  stiffness vanishes for ɸ since ∇ x ∇ ɸ = 0
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Mixed h-ɸ  Formulation for thin shells 
• ongoing development in corporation with Polytechnique Montreal 

Challenges 
• high aspect ratio 
• strongly nonlinear material behavior 
• electromagnetic-thermal interaction 
• boundary conditions 
• current sharing

air or
vacuum

thin
sheet

air or
vacuum

sheet thickness

sheet width

H-ɸ formulation: Thin Shell Approach
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H-ɸ formulation: Homologies

Boundary Conditions 
 current is applied over Ampere’s circuital law: 

•  homologies represent the loops that can be drawn 
around the conducting regions that fulfill Ampere’s law 

•  only integral current I needs to be known 

• cohomologies are cuts in the domain over which jumps 
in the magnetic potential ɸ are imposed so that Δɸ=I. 

➡ very elegant mathematics! 
➡ homology definition not user friendly 
➡ difficult to implement in commercial codes 

Ampére’s circuital law

dipole

+ -
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H-ɸ formulation: Homologies

Boundary Conditions 
 current is applied over Ampere’s circuital law: 

•  homologies represent the loops that can be drawn 
around the conducting regions that fulfill Ampere’s law 

•  only integral current I needs to be known 

• cohomologies are cuts in the domain over which jumps 
in the magnetic potential ɸ are imposed so that Δɸ=I. 

➡ very elegant mathematics! 
➡ homology definition not user friendly 
➡ difficult to implement in commercial codes 

Ampére’s circuital law

dipole

Homology 1 Homology 2

Homology 3

Cohomology
+ -
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H-ɸ formulation: Homologies
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Why  a custom codebase?

• need to predict quench behavior of HTS 
 → coupled electromagnetic-thermal simulation 

•  needs to be sufficiently fast 
 → uses state of the art h-ɸ formulation 
 → uses state of the art solver libraries (STRUMPACK) 
 → ability to run on a HPC node 

•  need complex geometries and current sharing 
 → uses state of the art thin shell models 
 → need low level access to data structure 

• need to handle highly nonlinear material properties 
 → custom database 
 → using 3D-B-splines to allow smooth derivatives

Mesh

Nodes

Sidesets 

• contain surfaces

Blocks 

• contain volume 
elements

Elements



9

Why  a custom codebase?

• need to predict quench behavior of HTS 
 → coupled electromagnetic-thermal simulation 

•  needs to be sufficiently fast 
 → uses state of the art h-ɸ formulation 
 → uses state of the art solver libraries (STRUMPACK) 
 → ability to run on a HPC node 

•  need complex geometries and current sharing 
 → uses state of the art thin shell models 
 → need low level access to data structure 

• need to handle highly nonlinear material properties 
 → custom database 
 → using 3D-B-splines to allow smooth derivatives

9

Edges & Faces

Sidesets 

• contain surface

Blocks 

• contain volume 
elements

Elements

Nodes

Cuts 

• contain connectors

Mesh
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Codebase Philosophy

• Flexibility & Maintainability 
• consistent naming scheme of functions and classes 
• lots of comments in code! 
• modular structure 

• simple MATLAB-like dense linear algebra 
• through ARMADILLO or BLAZE 

• text based interface tailored to magnet development 
• ability to write scripts in BASH and Python 

• utilization of community software 
• use open source data formats (GMSH, HDF5, Exodus II) 
• link against community libraries:  MUMPS, PETSc, STRUMPACK, … 

• be open source once mature 
• Berkeley Lab specific BSD-3 like license



Current Status
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Thin Shell Formulation: 2D Results 2023

Published Paper in SuST 2023  
• Christian Messe, Berkeley Lab 
• Nico Riva, MIT 
• Sofia Viarengo, Politechnico di Torino 
• Gregory Giard & Frédéric Sirois, Polytechnique Montreal

• validated against analytical methods + COMSOL / GetDP 
• first research promises faster and more detailed results than 

other established methods such as t-a 
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Thin Shell Formulation: 2D Results 2023



14

Current Efforts

PhD Student Gregory Giard (Polytechnique Montreal): 

• visiting scholar at LBL from 01/23-06/23 

• contribution to adaptive time stepping method 
• development of 3D thermal conduction model 

• implementing automated cohomology computation in 3D 
• automated identification of weak BCs based on user provided 

currents (“the user shall not worry about cohomoligies”)
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Current Efforts

Goal: 

• model a thin shell tapes tack in 3D after Alves et Al, 2022 

• extend model to encompass solder and thermal model 

• be able to do the coupled EM-Thermal quenching model by end of the year

[ Alves et al, 10.1109/TASC.2022.3143076 ]

Roadmap: 

• overhaul data structure for simplified programming of weak governing equations 

• implement “condensation” of degrees of freedom → get rid of Lagrange multiplyiers 

• first benchmark with 3D tapestack 

• implement solder and thermal model 

• benchmark involving quench 

• address contact sharing

air or
vacuum

air or
vacuum

sheet thickness



Work in Progress: Thermal Coupling
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Work in  progress: thermal coupling

• linear discretization + mass lumping collapses finite-
element method to resistor grid 

• can be first order even if Maxwell is second order 

• degrees of freedom sit on the edges 
→ assumes constant temperature per layer per element

layer 1

layer 2

length l



Work in Progress: Intertape current sharing



19

Toughts on Intertape Current Sharing

What we know: 

• current sharing does not work in 2D! 

• need a geometry preprocessor to compute overlapping surfaces 

•  coupling could work over the electric field 

Open Questions: 

•  Does contact resistivity affect the validity of cohomoligies? 

•  Is the model complete and free of contradiction? 

•  Does the model need to be extended with a resistor mesh ? 

→ modify current boundary conditions! 

→ use same resistor mesh as for thermal model!
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Conceptual Workflow

FEM h-ɸ

FEM T

Resistor Mesh

Material Model

geometry preprocessorinitial guess



Material Modeling
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Material Modeling

• High Nonlinearities for HTS Materials 

- material properties must be evaluated at every integration point 

- nonlinearities require many iterations 

- material curves must be smooth (consistent derivatives, continuous) 

- avoid expensive functions such as exp or log 

• Boobytraps in modeling and coding 

- piecewise polynomials 

- wasteful implementations 

- validity range of functions 

piecewise polynomials lead to convergence 
issues due to 

• discontinuous material properties 
• discontinuous derivatives 

CSE can be up to ~3 x faster!!!

bad code:  wasting multiplications: 

y = 10^( a + b * log(T) + c * log(T)^2 + d * log(T)^3 + ...  ) 

good code: Common Subexpression Elemination (CSE) 

logT = log(T) 

y = 10^( a + logT * ( b + logT * ( c + logT * ( d + ... ) ) ) ))

triangle integration points 
( 5th order )
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BELMAT (Concept)
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LaTeX Documentation 
original data points as CSV 

literature sources

Binary Database (HDF5) 
1D, 2D and 3D lookup tables 

with regularized data

MATLAB TOOL 
manual creation of curves 
regularized to B-Splines

Original Source Data

C++ APIPython API

Public GIT Repository

FORTRAN APIMATLAB API



Usecase Example
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• implemented in SparseLizard: ASC 2022 

•  implemented in BELFEM: SUST 2023



25

Summary

• developing a finite-element framework tailored to HTS cable & 

magnet development needs 

• demonstrated proof of concept in 2D 

• first performance tests very promising 

• Work in progress: 3D tape model for quenching (goal: winter 2024) 

• Work in progress: Intertape current sharing        (goal: spring 2025)  

• Work in progress: Material Database


