The 8th US Magnet Development Program annual collaboration meeting, Fermilab, 04/30/2024-05/03/2024

US MDP Bi-2212 Canted-Cosine-Theta (CCT) magnets at LBNL

Tengming Shen (LBNL)

For the LBNL Supercon group and the US MDP 2212 WG 2024/04/30

Outline

- Bi-2212 is the only multifilamentary, round wire HTS conductor with high critical current carrying capability above 20 T.
- A short history of Bi-2212 magnets at LBNL: From VHFSMC to MDP
- The current program, status overview, challenges, lessons learned.

(2015-2018): Single racetrack coils as a technology R&D vehicle for verifying heat treatment, materials compatibility, insulation, cable parameters

LBNL 17-strand Rutherford cable

Shen et al., Scientific Reports volume 9, Article number: 10170 (2019) Zhang et al Supercond. Sci. Technol. 31 105009 (2018)

(2015-2018): Single racetrack coils as a technology R&D vehicle for incorporating the best conductors available and benchmarking their coil performance

(2015-2018): A 4.7 T common coil dipole magnet (without a clear bore)

(2019-2022) Subscale Bi-CCT coils and the first Bi-2212 dipole magnet with bore (1.64 T, 31 mm bore)

- Material compatibility with 954 Albronze mandrel
- Methods of winding and insulating with TiO₂and mulltie sleeve insulation
- 9-strand Rutherford cable, 4.0 mm x 1.44 mm, with 0.8 mm strands twisted during cabling
- No quench training. No degradation due to quenches or thermal cycles.
- Only 40 cm long.
- A technology R&D vehicle and useful for verifying performance of new SBIR conductors.

• 15-30% J_c gap from strand to coil

Bi-2212 CCT magnet development overview

1m long. Needs RENEGADE (D. Davis talk)

Science of strand/cable/coil fabrication Improve/optimize magnet design

> U.S. DEPARTMENT OF Office of Science

Further design and analysis of CCT5-BIN5 hybrid magnet

- LBNL (hybrid) magnet test facility upgrade with a hybrid magnet header and two power circuits (R. Teyber talk)
- BIN5 insert assembly ready.

Mechanical integration of BIN5 and CCT5 and handling of special events

<u>CCT5/BIN5c</u> hybrid dipole magnet

- CCT5 or CCT5w?
- Add smart shim between CCT5 and BIN5?

 Eddy current during quench protection & force analysis, L. Brouwer
 Mech safety analysis by LG Fajardo
 Hybrid stress analysis, D. Arbelaez

Peak azimuthal stress during energization - 98 MPa with smart shim.

Back to this plot - how to further improve magnet performance?

- Understand and remove sources including leakage.
- Improve conductor performance.
- Improve coil fabrication and field generation efficiency.

Racetrack coils

Leakage observation – racetrack coils

RC4 – most severe one

Questions towards leakage

- OPHT was expected to remove leakage. Indeed this is the case in the round strand solenoids.
- <u>Why leakage in OPHTed, Rutherford cable</u> coils?
- How much an <u>impact</u> does it make <u>in</u> reducing coil performance?
- What is the <u>extensiveness</u> of the leakage in CCT coils where each cable is encased in a mandrel?

What intelligent things we can do? (1) Further postmortem analysis

RC5 postmortem microscopy By Daniel Davis and Tengming Shen

• Examine RC4 (not impregnated), RC5 (impregnated), and CCT coils (both not impregnated and impregnated).

Jean-Francois Croteau, Chris Escoba

Chris Escobar, UC Berkeley engineering, undergraduate

12

Leakage observation in a racetrack coil (RC4)

Dissection details

Coil cut along blue lines as shown above. It was cut into 8 segments and the leads, which extend to the left, were cut in half and labeled separately.

Leakage observation in a racetrack coil (RC4)

L1-T6-2

Jean-Francois Croteau, Chris Escobar

Leakage observation in a CCT coil (CCT BIN5c2OL)

Leakage observation in a CCT coil to quantify its impact

Jean-Francois Croteau, Chris Escobar

A new CCT coil with new insulations (pure alumina, BIN5E) has been wound

- Coil fab additionally supported by ARDAP.
- Wound. Reaction soon.
- Will serve as a backup to BIN5C.

By Youngjae Kim, FSU et al. FSU task led by D. Davis

- CCT ARDAP coil BIN5E:
 - Outer layer coil wound. No electrical shorts.
 - Have to use TiO₂ slurry to "repair, reinforce and lubricate" alumina fibers.

- CCT ARDAP coil BIN5E:
 - Inner layer coil wound. No electrical shorts.
 - NEW: Use Al₂O₃ slurry to "repair, reinforce and lubricate" alumina fibers. (courtesy of Dr. Jun Lu, NHMFL)

A fast-turnaround experiment to check various hypothesis and test methods of removing leakage

Insulation scenarios for Bi-2212 Rutherford cable CCT coils

Scenerios	Coating on Bi-2212 cables	Painting on insulation sleeves	Insulation sleeves
1	TiO ₂	No	No sleeves
2	No	No	Mullite (2Al2O3 - SiO2)
3	No	No	Pure alumina
4	TiO ₂	TiO ₂	Mullite (2Al2O3 - SiO2)
5	Al ₂ O ₃	Al ₂ O ₃	Mullite (2Al2O3 - SiO2)
6	TiO ₂	TiO ₂	Pure alumina
7	Al ₂ O ₃	Al ₂ O ₃	Pure alumina
8	Other	Other	Pure alumina/mullite

55 x <u>18</u>

37 x <u>18</u>

Al2O3

• Does leakage in Rutherford cable coils reduce in conductors with thicker Ag-Mg alloy like 1.0 mm diameter strands? (E. Barzi)

Summary/next steps

- Long length Bi-CCT1 coils await for RENGEGADE facility @ NHMFL.
- Bi-CCT2 (small bore, 12 mm wide cable) cable fabrication is moving forward and fabrication tests will be conducted to finalize the design.
 - Improve understanding of science of achieving high J_c in Bi-2212 Rutherford cables. (ARDAP talk)
- BIN5 is ready to be assembled into CCT5 to be tested as a CCT5/BIN5 hybrid in coming months. Back up BIN5E coils fabricated with new pure Alumina insulation.
- Improve understanding of the leakage with analysis of both racetrack coils and CCT coils, and a dedicated tester is started.

Coming next

Thank you for members of MDP 2212 WG and international collaborators.

Status of Bi-2212 CCT magnets	Tengming Shen
Alvin Tollestrup Auditorium , IARC	10:45 - 11:05
Status of Bi-2212 SMCT magnets	Alexander Zlobin
Alvin Tollestrup Auditorium, IARC	11:05 - 11:25
Commissioning the RENEGADE overpressure processing furnace	Daniel Davis
Alvin Tollestrup Auditorium, IARC	11:25 - 11:45
Status of Bi-2212 solenoid magnet development including cable solenoids	Daniel Davis et al.
Alvin Tollestrup Auditorium, IARC	11:45 - 12:00
Transverse pressure dependence of Bi-2212 Rutherford cables	Anna Kario
Alvin Tollestrup Auditorium, IARC	12:00 - 12:20
An ARDAP Project on Enhancing Domestic Production of Bi-2212 wires for High Field Magnets	Tengming Shen
Alvin Tollestrup Auditorium, IARC	12:20 - 12:35
Addressing test challenges and conductor needs	Emanuela Barzi
Addressing test challenges and conductor needs	Emanuela Barzi 13·20 - 13·30
Addressing test challenges and conductor needs Alvin Tollestrup Auditorium, IARC	Emanuela Barzi 13:20 - 13:30
Addressing test challenges and conductor needs Alvin Tollestrup Auditorium, IARC Highlights of LTSW2024 Bi-2212 session (David Larbalestier)	Emanuela Barzi 13:20 - 13:30 David Larbalestier

- Canted-Cosine-Theta
- Stress Management Cosine-Theta
- A crucial facility.

- International collaboration.
- A key technology question.

• New conductor science and advances.

What causes ceramic leakage?

Gas species detected by a residual gas analyzer while heating Bi-2212 wires at 180 °C/h in vacuum.

Like a pressure vessel at high-temperatures.

Conventional 1 bar heat treatment Ag creeps outward -> creep rupture of Ag-Mg

Overpressure processing Ag creeps inward -> densification

