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Real Time Characterization of Ramp Events
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SC magnet submerged in 
1.8K superfluid He 

Voltage Taps          
256 sensors  
10-10000 kHz         
+- 1 kV      

Quench Antenna        

~16-1286 sensors

100 kHz

+- 5V

Strain Gauges     

~256 sensors

100 kHz

+- 5V

AE Sensors     

~32 sensors

0.1-10MHz 

+- 5V

Fiber-Optic Sensors    

LUNA system

Iso/Amp

RF, Hall probe, other 
sensor possibilities

Analog Quench 
Protection

Digital Quench 
Protection

Processing Unit: FPGA(s) + Ethernet 
Controls

Storage Array

Method 1 (current): Use comparator or 
threshold on voltage taps based on J_op 
to trigger quench protection system, send 

all data to offline for later analysis 


Method 2 (proposed): Use multiple data 
modalities online to filter, clock, de-noise,  

monitor live time metrics, flag quench 
precursors dynamically  before porting to 

offline


Other possibilities: In-situ data reduction, 
simulations etc. 

Trip Current
Internal/External Dump

live display

lsplay 

Offline 

Algorithms



Data Driven Quench Characterization
• System Objectives: 

• Goal: Quench detection before some ms of quench event


• Modular and scalable with different sensor types, sample rates, 
number of channels


• Robust to changes in power supply noise


• Prevents false triggers during training ramp (high amplitude of 
signal that does not correlate with quench)


• Records metrics for interpretability of quench propagation in 
offline analysis 


• Interfaces well with a database storage system  


• Software task: Develop an algorithm that processes signals, and 
flags quench precursors within time and memory constraints


• Physics goal: Detect quench in a way that captures energy 
loaded to the magnet, flux jumps, and current re-distribution 
during the training ramp to determine when a quench will occur
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Existing method: Rescale according to current density and 
choose particular voltage. Source: Magnet Quench 101

Our sample ML Trigger that uses acoustics + QA data

https://cds.cern.ch/record/1643429/files/p1.pdf


Previous Work
• FNAL group has studied real time machine learning on acoustics data only where the model was given 

raw data with statistics with a focus on real time anomaly direction  


• Events were developed on two magnets with acoustic sensors


• Focus was on exploring what was possible with viewing data with ML


• Our current work focuses on developing denoising algorithms, running on multiple data types, and 
considering how these models may be interpreted with respect to raw data with MBHSM03 and MQXFA 
series magnets
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source

https://www.osti.gov/servlets/purl/1765128
https://www.osti.gov/biblio/1765128


Standard Algorithms vs. ML Approaches
Standard Algorithm ML Inference Techniques Evaluation Metric

Signal Denosing frequency domain technique 
(bandpass, FFT, etc.)

denoising auto-encoder, 
blocked weight matrix 

SNR of 1D Signals

Number of signals above 

noise floor at quench 

Quench Boundary 
Detection Weighted threshold by J_op reconstruction loss on 

dynamic threshold 
rate of false and true triggers


~s of quench, exceeding 
previous current

Quench Precursor 
Identification and Recall

limited, possible state 
machine history  

reconstruction loss history

n-k ramping history 

dB/dt, dE/dt  
Triggers above previous 

quench current 

Cross Sensor Correlation 
(Sensor and Data Type)

correlation coefficients 
between single RMS at a 

given t 

latent space projections of 
channels 

correlation density of 
channels and sensors 

Spatial Localization signal amplitude normalized 
to noise RMS at (x_i, y,_i, t_j)

reconstruction loss at  (x_i, 
y,_i, t_j)

||s||_{x,y}

______________


||L||_{x,y}

Event Characterization k-cluster of signal features latent space separation
Transient events, flux jumps, 
current redistribution, Kaiser 

effect  (in development)

*The latency and parameter footprint (memory resources) are also studied            5



Filtering and SNR at Quench Time 
• Raw Inputs: 

• MBHS03 Magnet 


• QA voltages at 100kHz 


• Acoustic voltages 1MHz 


• Current at 1 MHz


• Rolling window of 20ms, 20us step 


• Filtering and Preprocessing  

• Removed multiples of 60Hz for QA and Acoustic 
signals 


• Computed spectral entropy of raw windowed 
signals


• Why? Spectral entropy is robust to variations in 
noise, potentially helping with issues with power 
supply


• Work in progress: Build single inference matrix to 
replace SE/FFT filter 
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Raw waveform  STFFT to remove 60Hz 
Harmonics Spectral entropy over window

Noise floor remains consistent in time

SNR varies across channels, some more 
sensitive than others



Algorithm Logic 
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Input: QA channels


Raw waveform of 
20ms with 20us step

Filter 60Hz


Spectral entropy filter


Output: float value of 
spectral entropy in 
the window

Input:  AE channels


Raw waveform of 
20ms with 20us step

Filter 60Hz


Spectral entropy filter


Output: float value of 
spectral entropy in 
the window

Neural network 
updates gradient 
values every 7s

Is L1 difference between actual and 
reconstructed data  > n sigma of RMS floor 
of previous 


~10s of acoustic data?


~3s on QA?


If yes, trigger


If not trigger, set n to n-1

We are taking into account the following


1. Acoustic events tend to have much higher relative amplitude


2. QA events tend to occur more densely, and transients may occur in a short time span 


3.  Investigations into adaptive weighting and normalization of two model trigger streams are underway



Quench “Anomaly” Trigger
• To detect the quench boundary, we weight a dynamic threshold based on the RMS of the reconstruction loss


• We evaluated for 29 ramps, ramps n >1. The QA trigger missed 1 ramp. The acoustic trigger missed  6 ramps
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Sample loss triggers by different 
machine learning architectures

The model seems to trigger a “precursor or anomalous event earlier with acoustics than quench antenna


Possible causes: Power supply changes, event density by current boosting 



Quench Precursor Identification
• We can compare the changes in reconstruction loss of the auto-encoder with changes in energy and field of the 

magnet. At higher currents, the loss is higher, and detects hotspots close to the quench 
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Precursors: Quieter Ramps
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Acoustic triggers seem to line up right before the quench on quieter ramps, or due to small perturbations 

Edge effects due to window size over RMS may create a trigger as a false artifact of an anomaly 



General Behavior
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• Across all ramps spread of loss seems to 
be higher for quench antenna or acoustic. 
This is probably due to the greater 
numbers of channels and noise in QA.


• Acoustic events seem to line up with QA 
events, but smaller more subtle acoustic 
events many not be captured in our 
anomaly model due to window sizing, 
RMS fits of loss, and boundary effects


• We do however see consistent 
correlations in acoustic and quench 
antenna using the ML model


• Must now compare with standard 
statistics


• Event density varies by current ramp rate 
and previous training



In the Works
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We have overlayed machine 
learning models with our loss on 
the actual write geometry 


Aim: To see model is able to 
characterize geometry without 
explicit direction

We are investigating the use of 
models using a more consistent 
dataset: MQXA series magnet to 
see if our models may better 
capture the quench boundary or 
characterize the individual 
channel 


Also, we might return to other 
feature representations now that r 
understand the data better


Future: HTS magnet analysis at 
boundary?



Real Time and Edge Application of Algorithms
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Spectral Entropy 
Reconstruction 

Statistics 
Computation

Denoising Weight 
Matrix  

GPU processing time 
of 20ms at 20us step 
per channel at 16bit 

precision

1 MHz: ~22us


100KHz:~17us


1 MHz: ~2us


100KHz: ~1us
To be studied

Dense 
Autoencoder

U-Net  
Autoencoder

Transformer 
Autoencoder

GPU Inference time 
of 20ms window 
inputs at 16-bit 

precision

Acoustic Trigger: 
~54us 


QA Trigger:  ~79us

Acoustic Trigger: 
~2ms


QA Trigger:  ~3ms

QA Trigger: ~12ms

Best Total Time 
Trigger Efficiency 

within ~25s 

 

False Triggers: 1/29


Missed Triggers: 0/29 
True Triggers: 28/29


False Triggers: 2/29

Missed Triggers: 3/29

True Triggers: 24/29

In progress

Spectral Entropy 
Reconstruction Raw Statistics Denoising Weight 

Matrix  

Memory Footprint 
per 20ms window 

(Bytes) 

1 MHz: 16000b 

100kHz: 1600 b


1 MHz: 32000B


100kHz: 32000B
 To be studied 

Dense 
Autoencoder

U-Net  
Autoencoder

Transformer 
Autoencoder

Model Parameter 
Count (SE) 

Parameter Count 
(stats) 

Acoustics: 67,184


QA: 96,956

Acoustics: 463,52


QA: 658,692

Acoustics: 49,280


QA: 196,864

*All timing benchmarks are preliminary, seem stochastic



Conclusions and Outlook 
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• We have developed a series of tools and metrics for real time denoising and quench characterization 


• Our models seem to recover events that occur across the training ramp  and establish correlations 
between acoustic and quench antenna sensor data


• We are still investigating various adaptive weighting algorithms to deal with the multiple types of data 
and varying window size 


• The lack of consistent data in training makes consistent training challenging. Data regularity study to 
come


• We should eventually evaluate our algorithms on steady state data for actual real time control 


• For now, the model serves as an interesting tool for flagging potential precursors and understanding 
them


• Lots of room for ML in other parts of this problem: objective function optimization, RF type analysis


• Temperature sensors would contextualize many of these readings


