
GPU Accelerated Computational
Instruments with NVIDIA Holoscan
Adam Thompson | Principal Technical Product Manager
adamt@nvidia.com

mailto:adamt@nvidia.com

Background and Motivations

Scientific Computing is Evolving

Feature Pre-Exascale Post Exascale

Usage Batch Interactive & distributed

Workload Single simulation / ensemble Simulation/ensembles, AI training and inference, Quantum, Edge, Twin

System Configuration Homogeneous Modular Composed Heterogeneous Workflows

Experiments Offline data analysis for experiments Part of Real-time Instrument, Steering, and Offline

Digital

Twins
Reduced models / in-situ visualization Interactive combination of simulation and observational data

Quantum

Computing
Nascent National Priority

Programming

Models
Fortran, C++, MPI, OpenMP, OpenACC

Standard parallelism support in Fortran, C++, MPI, OpenMP, OpenACC,

Python, Julia, Pytorch, Tensorflow, DSLs

Experiments Simulation Viz Edge HPC+AI
Digital

Twin
Simulation

Quantum

Computing

Composite Workflows for Advancing Science

This Talk

Anatomy of a Sensor Processing Pipeline at the Edge
Domain Agnostic, Software Defined, AI-Enabled, and Scalable

GPU

Sensor

Data aggregation and
reduction

Pre-Processing /
Data Filtering

Apply pre-trained AI
model to data

stream to drive real-
time analytics

AI Inferencing

Apply domain
specific data

transformations

Post-Processing

Show AI-augmented
results to

operator/user

Visualization

Real Time Insights and Automatic Sensor Control

Analysis & Storage

Edge and Datacenter Collaboration
A Vision of Integrated Workflows

GPU

Sensor

Apply domain
specific data

transformations

Pre-Processing /
Data Filtering

Apply pre-trained AI
model to data

stream to drive real-
time analytics

AI Inferencing

Apply domain
specific data

transformations

Post-Processing

Show AI-augmented
results to

operator/user

Visualization

Real Time Insights and Automatic Sensor Control

Analysis & Storage

Digital Twin /
Simulation

AI Training

Edge

Datacenter

Scale, Resiliency, and Sensor Fusion

The 5 Pillars of Sensor Processing

Holoscan Platform

Sensor to GPU Data
Movement

High Bandwidth
Low Latency
GPUDirect

No Retransmits
Sensor Agnostic

Real Time GPU
Compute

C++ and Python
Jax, CuPy, Numba

CUDA-X, MatX
DLPack

Bring Your Own Code

Real Time AI
Inferencing

Bring Your Own Model
Multi-Model Inference
PyTorch, Tensorflow

TensorRT
TAO

Real Time
Visualization

Data Type Agnostic
Data Format Agnostic

Interactive

Collaborate with
Cloud/Datacenter

Scale Out Compute
Finetune AI Model
Refine Digital Twin
Multi-Sensor Fusion

Resiliency

Holoscan – NVIDIA’s AI-Enabled
Streaming Sensor Platform

NVIDIA Holoscan Platform

NVIDIA AI

Enabling Real Time, AI-Enabled Streaming Analytics at Any Scale

MGX / DGX

HPC

Grace Hopper

Simulation

IGX Orin

Enterprise Edge

AGX Orin

Embedded

Sensor and Domain Agnostic Software Defined
Low Latency, High

Throughput
Scalable from Edge to

Datacenter

NVIDIA Holoscan
SDK for Building AI-Enabled Sensor Processing Applications

▪ C++ and Python APIs for
domain agnostic sensor data
processing workflows

▪ Multi-Node and Multi-GPU
support with advanced
pipeline scheduling options
and network-aware data
movement

▪ AI Inference with pluggable
backends such as ONNX,
Torchscript, and TensorRT

▪ Scalable from IGX Orin (ARM
+ GPU) to DGX (x86 + A100)

▪ Apache 2 Licensed and
Available on GitHub

Features

▪ Simplifies sensor I/O to
GPU

▪ Simplifies the deployment
of an AI model in a
streaming pipeline

▪ Provides customizable,
reusable, and flexible
components to build and
deploy GPU-accelerated
algorithms

▪ Scale workloads with
Holoscan’s distributed
computing features

▪ Deploy to the Cloud with
Holoscan Cloud Native and
Holoscan App Packager

Benefits

https://github.com/nvidia-holoscan/holoscan-sdk

Holoscan Ptychography Pipeline
Collaboration with Diamond Light Source – 4x Reduction in User Wait Time with Holoscan

Batched Pipeline (Original)

IO8-1 Detector @ 25

Hz

UDP Ingest
Processing
(C, NumPy)

HDF5

Preprocessing
(NumPy)

HDF5

Reconstruction
(CuPy)

HDF5

Network

Disk

Edge Data Center

Holoscan Pipeline

IO8-1 Detector @ 25

Hz

Basic Network
Operator

Preprocessing
(Jax)

Reconstruction
(CuPy)

HDF5

Network

Disk

Edge Data Center

GPU Mem

Holohub Operator Custom Holoscan

Operator

Custom Holoscan

Operator

UCX

Holoscan Fundamentals

Node / GPU 0 Node / GPU 1

Operator 1

Operator 2A

Operator 2B

Operator 3 Operator 4 Operator 5 Operator 6

Fragment 1 Fragment 2

Network-Aware Data

Movement with UCX

Holoscan Fragments define hardware locality of a given series of connected

Operators. Data movement within a Fragment is facilitated via shared GPU pointers

Holoscan Applications are built by forming a graph of either core or custom

Holoscan Operators. Operators are the fundamental unit of work in Holoscan and

can define I/O, AI inferencing, visualization, and accelerated computing functions

Schedulers

Greedy Scheduler Multi-Threaded Scheduler

Uses single CPU thread to launch

operators in a pipeline sequentially

Can pin operators to a specific CPU thread

for async execution and pipeline parallelism

Profiling Tools

Data Flow Tracking

Tracks data latency as a packet/frame

moves through a Holoscan application

Nsight Systems

Observe overall application behavior

and performance

Holohub
A Repository for Hosting Sample Holoscan Applications and Operators

Repository: https://github.com/nvidia-holoscan/holohub

Sensor I/O AI + Sensor Processing GPU Accelerated Sensor Processing

Basic Network Operator

Linux Sockets

Advanced Network Operator

DPDK, GPUDirect RDMA

SDR FM Demodulation

FM Demodulation + Speech to
Text Transcription

Simple Radar Application

Python and C++ Examples on
Traditional Radar Pipeline

Orthorectification

GPU Accelerated
Orthorectification with OptiX

Face Detection

TAO Pretrained Model on Video
Stream SAR Image Formation

Python and C++ Examples for
Multiple Algorithms

https://github.com/nvidia-holoscan/holohub

Who Is Using Holoscan
A Glimpse at Initial Applications

Customer Domain Application Why Holoscan?

Diamond Light Source Scientific Computing Ptychography – High Resolution X-

Ray

Batched -> Streaming Processing

Argonne National Laboratory Scientific Computing X-Ray Photon Correlation

Spectroscopy

Batched -> Streaming Processing

Lawerence Berkeley National

Laboratory

Scientific Computing 4D STEM Microscopy Science Programmable Edge

Lawrence Livermore National

Laboratory

Scientific Computing High Speed Instrument Command

and Control

Integration with Existing

Instrument Frameworks

SETI / Breakthrough Listen #1 Radio Astronomy Correlation and Digital

Beamforming

High Speed I/O to GPU Compute

SETI / Breakthrough Listen #2 Radio Astronomy Narrowband ML Inferencing Online ML Inferencing

Analog Devices Test & Measurement Platform Enablement High Speed I/O to GPU Compute

Georgia Tech Research Institute #1 Aerospace and Defense Radar Signal Processing High Speed I/O to GPU Compute

Georgia Tech Research Institute #2 Aerospace and Defense Automatic Emitter Identification Online ML Inferencing

Prototyping and Developing GPU
Accelerated Applications

History of Signal Processing on NVIDIA GPUs
High Level Abstractions to Fast Compute

cuSignal – Python GPU-
Accelerated Signal Processing
Library

cuSignal – Selected Algorithms
GPU-accelerated SciPy Signal (Python)

Convolution

Filtering and Filter Design

Waveform Generation

Window Functions

Spectral Analysis

Convolve/Correlate
FFT Convolve
Convolve/Correlate 2D

Resampling – Polyphase, Upfirdn, Resample
Hilbert/Hilbert 2D
Wiener
Firwin, FIR Filter

Chirp
Square
Gaussian Pulse

Kaiser
Blackman
Hamming
Hanning

Periodogram
Welch
Spectrogram

Phased Array

Peak Finding

Full List of Supported Functions – cuSignal Docs

Ambgfun
MVDR

https://docs.rapids.ai/api/cusignal/stable/

SciPy Signal – Polyphase Resampler

import numpy as np
from scipy import signal

start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3

cx = np.linspace(start, stop, num_samps, endpoint=False)
cy = np.cos(-cx**2/6.0)

%%timeit
cf = signal.resample_poly(cy, resample_up, resample_down, window=('kaiser', 0.5))

2x Xeon E5-2600: 2.36 seconds

cuSignal – Polyphase Resampler

import cupy as cp
import cusignal

start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3

cx = cp.linspace(start, stop, num_samps, endpoint=False)
cy = cp.cos(-cx**2/6.0)

%%timeit
cf = cusignal.resample_poly(cy, resample_up, resample_down, window=('kaiser', 0.5))

NVIDIA A100: 4.69 milliseconds, 503x SciPy Signal (CPU)

Speed of Light Performance – A100

timeit (7 runs); Benchmarked with ~1e8 sample signals, float64

Method SciPy Signal (ms) cuSignal (ms) Speedup (xN)

fftconvolve 27300 46.6 585.8

correlate 4020 28.3 142.0

resample 14700 15.4 954.5

resample_poly 2360 4.6 513.0

welch 4870 23.5 207.2

spectrogram 2520 13.2 190.9

convolve2d 8410 6.04 1392.3

Learn more about cuSignal functionality and performance by browsing the notebooks

https://github.com/rapidsai/cusignal/tree/master/notebooks

Digital Beamforming Example – Georgia Tech Research Institute
Developer and GPU Speedups with ~4 Hours of Work

MATLAB*
~174 seconds

CuPy/cuSignal
P100* – 3.16 seconds | A100 – 1.15 seconds

*Double Precision, Profiled on same node, Intel 2x Xeon E5-2600 with P100

~150x

Speedup

Get Started

https://github.com/cupy/cupy

pip install cupy-cuda12x

NOTE: As of CuPy v13, cuSignal has Transitioned to cupyx.scipy.signal

[deprecated]: https://github.com/rapidsai/cusignal

414,220 Anaconda Downloads

702 GitHub Stars

43 Contributors

https://github.com/cupy/cupy
https://medium.com/cupy-team/announcing-cupy-v13-66979ee7fab0
https://github.com/rapidsai/cusignal

MatX: A C++ Header Only Library
for GPU-Accelerated Numerical
Computing

Bridging Flexibility, Ease-of-Use, and Performance
GPU-Accelerated Numerical Computing Software for Every Type of Developer

PYTHONISTA C/C++ GURU

cuBLAS

cuSOLVER

cuFFT

cuRAND

CUTLASS

Python Bindings to CUDA

LLVM to CUDA

Optimized CUDA Libraries

MatX – C++17 Template Library for Numerical Computing
Design Overview

Features

Ease of Use:

Straightforward programming model
with familiar interfaces
(MATLAB/Python-like)

Wraps existing libraries like cuFFT,
CUTLASS, and cuRAND

Easily customizable

 High Performance:

Prioritization of efficiently handling
streaming data

Separates allocation and processing

Key Concepts

MatX leverages CUDA Managed Memory, freeing the developer from
worrying about data locality

Compute operations are performed on arbitrary-rank tensors --
lightweight descriptors of data either on host or device. Tensors are
accepted in all MatX functions (like a NumPy ndarray)

Zero data movement view manipulations (clone, slice, permute)
that can be chained together at compile-time

Supports many transforms: FFT, convolution, filtering, GEMM,
pointwise operators, and contraction

Supports host and device execution with minimal code changes

MatX API Examples

Initialize a 2D tensor with data: A = {{1, 2, 3}, {4, 5, 6}};

Add two tensor element-wise and scale: (A = (A + B) / 5.0).run();

Perform a traditional GEMM: (C = matmul(A, B)).run();

Perform an in-place FFT: (A = fft(A)).run();

Batch sort a 4D tensor by rows: (t4_sort = sort(t4)).run();

import numpy as np
from numpy import fft as fft

N = min(num_samp, num_samp_resamp)
nyq = N // 2 + 1

Create an empty vector with num_samps elements
sig = np.empty(num_samp)

Real to complex FFT, time to freq domain
fft_sig = fft.rfft(sig)

Slice
slice_sig = fft_sig[0:nyq]

Complex to real IFFT
resamp_sig = fft.irfft(slice_sig, num_samp_resamp)

MatX/Python Comparison
FFT Based Resampler – No Windowing

uint32_t N = std::min(num_samp, num_samp_resamp);
uint32_t nyq = N / 2 + 1;

auto sigView = make_tensor<float, 1>({num_samp});
auto sigViewComplex = make_tensor<complex, 1>({num_samp/2+1});
auto resampView = make_tensor<float, 1>({num_samp_resamp});

// Real to Complex FFT, time to freq domain
(sigViewComplex = fft(sigView)).run(stream);

// Slice to half spectrum based on num_samp_resamp
auto sliceView = slice(sigViewComplex, {0}, {nyq});

// Complex to Real IFFT, back to time domain
(resampView = ifft(sliceView)).run(stream);

Python MatX

5.36s (Xeon E5-2698v4 @ 2.20GHz) 5.48ms (V100)

~1000x improvement!

Revisiting Digital Beamforming with GTRI
Performance Optimizations with MatX

Get Started

https://github.com/NVIDIA/MatX

Join the MatX Community!

1.1k GitHub Stars

21 Contributors

BSD-3 Licensed

https://github.com/NVIDIA/MatX

IGX – Embedded Platform for
Enterprise Edge AI Processing

NVIDIA IGX Platform for Industrial-Grade Edge AI

• CPU: 12-core Arm

• GPU: NVIDIA Ampere 2,048 CUDA, 64 Tensor

• Optional Discrete GPU card : NVIDIA A6000

• Smart NIC: NVIDIA ConnectX-7 (200 Gb/s of networking
speed, ideal for ingesting high frame rate video)

SOFTWAREHARDWARE

NVIDIA IGX Platform for Industrial-Grade Edge AI

HARDWARE

• Safety MCU – Certified safety RTOS monitoring your platform
• Active attestation - all the sensors on IGX and the SoM being

terminated at the sMCU and monitored in real-time. This is a
prerequisite for Safety

• BMC – Designed to allow updates to all of the key components inc.
Orin SoM, CX7, Safety MCU, Ethernet Switch, PCIe Switch, Ethernet
Controller(s), and SATA Controller
• Prerequisite for OTA for OS & MCU

• ConnectX-7
• High Bandwidth networking –ability to ingest “raw” video at high

FPS eg. Industrial Defect camera running @ 500-1000FPS. You
can’t compress these types of feeds so you need ultra-high BW to
cope with them.

• TLS, MACSec or IPSec offload engines for Ground-Cloud/Cloud-
Ground data protection/encryption

• Rivermax support for GPUDirect UDP / GPUDirect RDMA
• Precision Time protocol (PTP) support for accurate timing
• PCIe Switch – Add capabilities beyond Orin SoM, ie Add discrete

GPU

FUNCTIONALITY

Bring You Own Sensor to
Holoscan

Receive

Transmit

Basic Network Operator Rx/Tx
Focus on Simplicity: Ingest UDP Ethernet to GPU at < 10Gbps

• Sockets provide a common interface to send and receive data to/from an abstract
sink/source

• Works on all Linux distributions and network cards

• Supports both streaming and datagram protocols

• Kernel provides protocol stacks

• User doesn’t need to worry about retransmits, headers etc

• Ideal for simple use cases requiring easy portability

• Cannot achieve line rate on modern NICs

• All packets go through have at least one copy

• User-space to kernel-space context switches

• Small number of threads

• No GPUDirect

• Get started with Basic Network Operator on Holohub

TX Operator

Basic TX
Operator

Linux

Linux

Basic RX
Operator

Rx Operator

Simple message to send/receive

https://github.com/nvidia-holoscan/holohub/tree/main/operators/basic_network

Receive

Transmit

Advanced Network Operator
Focus on Performance: Ingest UDP Ethernet to GPU at Line Rate

• Bypasses Linux kernel for access directly to NIC DMA buffers

• Achieves peak rates on any modern NIC

• Scalable number of CPU cores to handle traffic in parallel

• Utilizes DPDK for packet processing and IPC

• Works on any NIC supported by DPDK

• More libraries can be supported for new use cases without changing the API

• Zero-copy interface from NIC into user buffers or directly to GPU using GPUDirect via standard UDP
packets

• No RDMA protocol necessary (RoCE/iWARP)

• GPUDirect supported with any legacy sending protocol (UDP, Ethernet, VITA-49, etc)

• Different modes: Header-Data Split (HDS), Batched, or Persistent Kernel

• Python bindings in progress

• Get started with Advanced Network Operator on Holohub

TX Operator

ANO TX
Operator

Linux

Linux

ANO RX
Operator

Rx Operator

Incoming UDP

[0:N]

[N:]

https://github.com/nvidia-holoscan/holohub/tree/main/operators/advanced_network

Receiver

Sensor Processor

IGX (Xavier, RTX6000)

UDP

Ethernet

Hardware Configuration

5G Instrumentation with Holoscan
End-to-End Signal Processing at 120Gbps+

Pointer
Digital
Down

Conversion
Pointer

Error and
Spectrum

Calculation
Pointer

NATS
Sender

Low Speed
Network

Web GUI
Visualization

Advanced
Network
Operator

RX

UDP
Ethernet

Holoscan Receive Software Pipeline

Transmitter

IGX (Xavier, RTX6000)

Holoscan Transmit Software Pipeline

UDP
Ethernet

Advanced
Network
Operator

TX

File Read

Recorded 120Gbps

I/Q RF Data

Real Time Visualization

file:///C:/Users/adamt/Downloads/2022-12-02 12-41-25.mp4

Software Defined, Scalable
Sensors with Hololink

Hololink
Combining Specialized Sensor I/O with GPU Computing and Holoscan

2 Flavors of Hololink

FPGA

F
M
C

Net

NetGPIO

Serdes

E
N
E
T

Sensor
Config

Packetizer

I
/
O

Low Power

2 Watts

2x10 GbE

High Performance

20 Watts

2x100 GbE

Modern Sensor Processing – Software Defined and GPU Accelerated

Analog Front-

End
Analog to Digital

Converters

Hololink
FPGA Data Conversion

to Ethernet

Sample
Data

UDP

SmartNIC
DMA, Decrypt,

Reliability

GPU Direct

GPU
Sensor Processing,

Output Generation

Computer

Sensor Plug and Play with Holoscan Operators and Hololink
Enabling Domain Agnostic Rapid Sensor Processing Design and Deployment with Holoscan

Modern Sensor Processing – Software Defined and GPU Accelerated

Analog Front-

End
Analog to Digital

Converters

Hololink
FPGA Data Conversion

to Ethernet

Sample
Data

UDP

SmartNIC
DMA, Decrypt,

Reliability

GPU Direct

GPU
Sensor Processing,

Output Generation

Computer

Holoscan Operators Deliver Plug-and-Play Capabilities with Data Converter DevKit

Operators can wrap existing packet processing libraries like DPDK, DOCA, and Rivermax

Abstracts sensor data movement from developer regardless of sensor data type

Unlocks immediate productivity, allowing sensor processing engineers to focus on new science

UDP
Receive

Hololink

FPGA

Holoscan
Tensor

UDP
Sensor
Data

Hololink

FPGA

UDP
Transmit

UDP
Holoscan
Tensor

Sensor
Data

AD9986 Demo with
Hololink 100G and IGX
Playback of sinusoid from ADI 9986
MxFE with loopback

Packetization with Hololink

PSD generation with Holoscan

Currently operating at ~68Gbps due to
MxFE channel limitations (2x at 34Gbps).

Successfully demonstrated 200Gbps on
Hololink alone in loopback

Scaling Sensor Processing
Pipelines

Holoscan Application Packager and Runner
Simplifies Containerization, Packaging, and Testing of Holoscan Applications

• Application Packager: command line tool to package and
containerize a given Holoscan application with support for both
C++ and Python

• Supports cross compilation, meaning development can be on an x86
platform while deployment is on an Arm system (e.g. IGX Orin)

• Application Runner: command line tool to run and test
containerized Holoscan applications

• Abstracts internal packaging details

• Both the Packager and Runner are Open Container Initiative (OCI)
compliant and compatible with Docker, Kubernetes, and containerdDevelop application

using Holoscan SDK

Container Registry

Cloud

Build Microservices

On-Prem

Build Container

Deploy and Run

Rapid Data Analysis and Real Time Steering
Resilient Workflows with Holoscan and Holoscan Cloud Native

Sensors

UDP
Sample

Data

UDP

PCIe

Edge Compute

Fragment 1

Fragment 2

Fragment N

UDP RX
(Sockets)

Pre-
Processing

AI
Inference

UDP RX
(RDMA)

Pre-
Processing

AI
Inference

GPUDirect
AI

Inference

UDP
Packetize

and TX

Commercial or On-Prem Cloud (HCN)

H
e
lm

 C
h
a
rts

Compute
Instance

1

Compute
Instance

N

Compute
Instance

1

Compute
Instance

N

Compute
Instance

1

Compute
Instance

N

CSP/K8s
Services
and Tools

Cloud to Sensor Command and Control

Edge to Sensor Command and Control

Containerize

Auto Scaling

PTP Timing

Data
Aggregation

GPUDirect

Contributing and Getting
Started

Getting Started with Holoscan

Holoscan References

https://github.com/nvidia-holoscan/holoscan-sdk

docker pull nvcr.io/nvidia/clara-holoscan/holoscan:v1.0.0

pip install holoscan

https://docs.nvidia.com/clara-holoscan/sdk-user-guide/index.html

Debian Packages available on NGC

https://github.com/nvidia-holoscan/holoscan-sdk
https://docs.nvidia.com/clara-holoscan/sdk-user-guide/index.html
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara-holoscan/resources/holoscan_dev_deb

Learn More about NVIDIA Holoscan

Technical BlogsNVIDIA Holoscan Webpage
https://developer.nvidia.com/blog/https://developer.nvidia.com/holoscan-sdk

Order a DevKit
https://www.nvidia.com/en-us/edge-

computing/products/igx/

GTC Spring 2023

On-Demand

Session Talks and Special Events

Cosmo GI Genius Session - S51262
Learn How to Deploy and Deploy Real-

Time AI Applications in Healthcare

MagicLeap Session - S52046
Digital Twins in Augmented Reality

with Omniverse, Holoscan, and Magic
Leap

https://developer.nvidia.com/blog/?search_posts_filter=holoscan
https://developer.nvidia.com/holoscan-sdk
https://www.nvidia.com/en-us/edge-computing/products/igx/
https://www.nvidia.com/en-us/edge-computing/products/igx/
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1671433832311001eRGN
https://www.nvidia.com/gtc/session-catalog/?tab.catalogallsessionstab=16566177511100015Kus&search=holoscan%20&ncid=so-nvsh-428704#/
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666293025465001FXaC
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1668042591095001bZfP

… And the Advanced Network Operator

ANO Benchmark App: https://shorturl.at/sAM28

ANO Holoscan Operator: https://shorturl.at/rsDFZ

Example RADAR App: https://shorturl.at/sxKPW

https://shorturl.at/sAM28
https://shorturl.at/rsDFZ
https://shorturl.at/sxKPW

	Slide 1: GPU Accelerated Computational Instruments with NVIDIA Holoscan
	Slide 2
	Slide 3: Scientific Computing is Evolving
	Slide 4: Composite Workflows for Advancing Science
	Slide 5: Anatomy of a Sensor Processing Pipeline at the Edge
	Slide 6: Edge and Datacenter Collaboration
	Slide 7: The 5 Pillars of Sensor Processing
	Slide 8
	Slide 9: NVIDIA Holoscan Platform
	Slide 10: NVIDIA Holoscan
	Slide 11: Holoscan Ptychography Pipeline
	Slide 12: Holoscan Fundamentals
	Slide 13: Holohub
	Slide 14: Who Is Using Holoscan
	Slide 15
	Slide 16: History of Signal Processing on NVIDIA GPUs
	Slide 17
	Slide 18: cuSignal – Selected Algorithms
	Slide 19: SciPy Signal – Polyphase Resampler
	Slide 20: cuSignal – Polyphase Resampler
	Slide 21: Speed of Light Performance – A100
	Slide 22: Digital Beamforming Example – Georgia Tech Research Institute
	Slide 23: Get Started
	Slide 24
	Slide 25: Bridging Flexibility, Ease-of-Use, and Performance
	Slide 26: MatX – C++17 Template Library for Numerical Computing
	Slide 27: MatX API Examples
	Slide 28: MatX/Python Comparison
	Slide 29: Revisiting Digital Beamforming with GTRI
	Slide 30: Get Started
	Slide 31
	Slide 32: NVIDIA IGX Platform for Industrial-Grade Edge AI
	Slide 33: NVIDIA IGX Platform for Industrial-Grade Edge AI
	Slide 34
	Slide 35: Basic Network Operator Rx/Tx
	Slide 36: Advanced Network Operator
	Slide 37: 5G Instrumentation with Holoscan
	Slide 38
	Slide 39: Hololink
	Slide 40: Sensor Plug and Play with Holoscan Operators and Hololink
	Slide 41: AD9986 Demo with Hololink 100G and IGX
	Slide 42
	Slide 43: Holoscan Application Packager and Runner
	Slide 44: Rapid Data Analysis and Real Time Steering
	Slide 45
	Slide 46: Getting Started with Holoscan
	Slide 47: Learn More about NVIDIA Holoscan
	Slide 48: … And the Advanced Network Operator
	Slide 49

