ColdBox data analysis for Membrane electronics

Dante, Ajib

Operation conditions and Data samples for this Analysis

VD ColdBox at NP – January 2024 (~20 to 31 - to check)

- SiPM: FBK TT operated at 32.5 V (5.5 over-voltage)
- VD-style: DVDM-C
- HD-style: DMEM
- DAPHNE V2 (62.5 MHz 16 ns/tick)
- LED: 275 nm (low intensity -> 4.8 V))

Date	Run	N.wfm /N.LEDPulses	DAPHNE AFE setting (attenuation)	
	24037	5633/ 84495	600	
	24062	2906/ 43590	1925	
	24089	4964/ 74460	1330	
	24097	6016/ 90240	1860	

DAPHNE data (hdf5) LArSoft decoder module art root ArSoft gallery script Root ntuple Root analyzer macro Analysis goals

•SPE Signal Amplitude [ADC] and Baseline Noise rms [ADC] at different DAPHNE Attenuation setting ==> Amplitude SNR

• SPE Signal Integral [ADCxtTick] and Baseline Noise Integral [ADCxtTick] at different DAPHNE Attenuation setting ==> Integral SNR

Methods

- Use all data: wfm(800 mus) with <16> LED pulses => split into 16wfm(50mus)
- Avg baseline (pre-samples), Baseline subtraction
 - Option: Apply filters (denoising) [Taking moving average of 4 points before and 4 points after a given point, and applying Total variation 1D denoising filter (TV1D)]
 - Option: apply evt. Selection
- Find signal => Signal Max = Amplitude [ADC]
 - •If No signal in wfm => baseline avg=Noise [ADC]
- Amplitude Finger Plot => Amplitude SNR (at different DAPHNE Attenuations)
- Align to max amplitude time
 - Define Integration window (tot n.of Ticks, n.Ticks before/after max amplitude time) [Note: HD and VD signal shape is different, ~same zero-crossing time]
 - => Signal Integral [ADC x tTick]
 - If no signal in window => baseline integral [ADC x tTick]
 - Integral Finger Plot => Integral SNR at different Integration windows and at different Attenuations

Amplitude Study - Results

- Examples of small wfm's w/ w/out signals (0, 1, 2/few PEs) for VD and HD
- Amplitude analysis: examples of Noise distribution and finger plot (VD vs HD) for given attenuation, different denoising (and raw).
- Big table for Amplitude
- Some graphs from table
 - •SPE-Amplitude vs AFE for VD and HD
 - Noise-RMS vs AFE for VD and HD
 - •SNR vs AFE for VD and HD
 - SNR vs SPE-Amplitude for VD and HD

Amplitude Study:

Run 24062 [each waveform spans ~50,000 ticks = 800 micro-sec LED pulses appears at an interval of 3125 ticks, however there is a jitter

Each waveform is divided into 15 segments equal segment considering 1200 ticks before the pulse and 1500 after the pulse.

RMS noise on baseline:

Signal amplitude: SPE amplitude is measured by fitting Gaussian to the 2nd and 3rd peak and taking the difference between fitted mean values.

Some LED pulses after baseline subtraction and inverting DAPHNE output [24062] VD HD

Similar analysis were performed for run (24037, 24089, 24097) [Sample pulses below]

Amplitude study summary table:

Run	DAPHNE AFE Setting attenuation	Electronics type	Amplitude (raw) ADC	Amplitude denoised ADC	Baseline noise rms (raw) ADC	Baseline noise rms (denoised) ADC	SNR_A (Amplitude/rms) raw	SNR_A (Amplitude/rms) denoised
24037	600	VD	60.49	57.01	12.26	6.6	4.93	8.64
		HD	55.56	56.9	26.9	18.8	2.06	3.02
24089	1330	VD	20.97	18.8	4.99	2.36	4.2	7.97
		HD	NA*	16.0	15.65	>7.0 (big non-gaussian tail)	NA	2.29
24097	1860	VD	8.94	8.36	3.1	2.12	2.88	3.94
		HD	NA*	NA*	6.94	>4.9		
24062	1925	VD	8.06	7.96	2.936	2.034	2.74	3.91
		HD	7.7	7.49	4.425	2.891	1.74	2.51

*Unable to resolve based on amplitude distribution (plot in back up)

SNR (Amplitude/baseline rms) vs SPE amplitude

Integral Study - Results

 Aligned wfm's superimposed in "persistence" plot - examples for VD and HD

Integration Windows

- Integral analysis: examples of Noise distribution and finger plot (VD vs HD) for given attenuation,
- Different integration window: SNR variation for one run (highest attenuation)
- Big table for Integral
- Some graphs from table
 - •SPE-Integral vs AFE for VD and HD
 - Noise vs AFE for VD and HD
 - •SNR vs AFE for VD and HD
 - SNR vs SPE-Amplitude for VD and HD

Integral study

Waveforms are baseline subtracted and peaks are aligned.

An integration window is made around the position of the pulses.

700

Run 24062 (AFE=1925)

100% of the event are used (no cut) 46500 events.

Federico's SNR vs integration window 0.8 M1 - VD slides M2 - HD 0.6 Integration window starts immediately before the pulse rising edge. 0.4 Since the VD rising edge is faster than the HD rising edge, the 0.2 starting point is not the same: Pulse rising edge(from Federico's slides): HD: 150 ns 1450 VD: 65 ns SNR vs. Integration Window Width SNR VD Integration window starting point: HD: 20 ticks before the max • HD VD: 12 ticks before the max SNR is defined as the separation between the mean of the PE peaks integral divided by the standard deviation of the 0 PE peak. HD Max SNR = 3.43 VD Max SNR = 4.35 A study of the SNR vs integration window width is made. 20 30 40 50 60 70 10 Integration Window Width [Time Tick]

Run 24062 (AFE=1925) - highest attenuation Integral histograms

 $SNR = \frac{\mu_1 - \mu_0}{2}$ σ_0

46496

247.6

Using the integration window giving the max SNR for both. More histograms in backup slides.

HD Max SNR = 3.43

VD Max SNR = 4.35

BackUP

Backup **Slides**

HD integral histograms

46496

348.7

137/124

 383.2 ± 4.7

 4.361 ± 1.084

 65.47 ± 0.95

 378.9 ± 6.2

 223.2 ± 1.7

 64.14 ± 1.78

 242.2 ± 4.0

 442.3 ± 2.7

46496

429.9

0.3679

164.4 / 159

 274 ± 3.5

 7.975 ± 1.858

 90.97 ± 1.86

 275.2 ± 3.6

 297.3 ± 2.0

 190.5 ± 3.1

 597.7 ± 2.6

 100.5 ± 4.1

 91.14 ± 2.84

 90.81 ± 4.96

0.2004

200

VD: Integration Window [27] Time Tick

600

500

400

300

200

100

-200

0

-200 0 200

ليتنابت

0

200

400

H Ch Wind 3

mound

1200 1400

Entries

Mean

Prob

N_o

μ.

σ.

N.

1000

 χ^2 / ndf

00 400 600 800 1000 1200 1400

1000 1200 1400 Integral (ADC x Time Tick)

600

Integral histogram for the same integration window in both 50 ticks

Note: 50 tick is the same window used by Federico

HD Max SNR = **3.3**

VD Max SNR = 3.6

SPE amplitude raw[ADC]

-

