

Recent lepton flavour results from ATLAS

Ben Wilson (University of Manchester)

NuFact 2024

17/09/2024

Lepton-flavour violation at ATLAS

What can ATLAS search for and why?

The Standard Model as we know it does not require lepton-flavour to be a conserved quantity or for lepton-flavour universality to be respected \rightarrow an *accidental symmetry*

Neutrino oscillations are proof of LFV in neutral leptons but LFV in charged leptons (cLFV) has not been observed

 $^{\circ}\,$ In the SM cLFV is GIM suppressed by $G_F^2 m_{
m V}^2 \sim 10^{-50}\,$

Observation of cLFV would be evidence for BSM physics and there are a range of BSM models that ATLAS can directly probe:

- Leptoquarks
- Heavy neutral leptons
- Effective field theories
- \circ SUSY, Z' boson, Quantum black holes

Can test lepton-flavour universality through precision measurements of branching ratios

[1] Introduction to Charged Lepton Flavour Violation, Universe 8 (2022)

ATLAS sits 100m underground, is 44 m long and 25 m tall and weighs 7000 tonnes

The ATLAS detector

Introduction to leptoquarks

They carry both **baryon** and **lepton** number and have colour charge and fractional electric charge

Come in up/down and scalar/vector types

Focus on coupling to **3rd** generation of quarks and leptons

Motivated as an explanation of *b***-meson anomalies**

• 3.3 σ deviation in R_D/R_{D^*}

Leptoquarks are a potential explanation for g-2anomaly

Many leptoquark models, requires a range of analysis and final states for comprehensive picture

W

 $R_D = \frac{\text{Br}(B \to D\tau \bar{v}_{\tau})}{\text{Br}(B \to D\ell \bar{v}_{\ell})}$

Single production: $b\tau\tau$

Select events containing a **b-jet** and $au_{lep} au_{had}$ or $au_{had} au_{had}$ pair

Non-resonant leptoquark interference with SM at low *b*-jet p_T

Unclear how to model and very model dependent

 \rightarrow Perform search for leptoquarks in high *b*-jet p_T SR

ightarrow Perform model-independent search in both high/low *b*-jet p_T SRs

Double production: b au b au

Select events containing **two** *b***-jets** and $au_{
m lep} au_{
m had}$ or $au_{
m had} au_{
m had}$ pair

Train **parameterised neural network** (PNN) to separate LQ signal from backgrounds (mainly $t\bar{t}$ & single top)

Improvement on earlier analysis:

- $^{\circ}~$ More data (36.1 fb⁻¹ \rightarrow 139 fb⁻¹)
- Improved tau ID and b-tagging
- PNN rather than BDT

Variable	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel
$ au_{ m had-vis} \ p_{ m T}^0$	1	 Image: A set of the set of the
s _T	\checkmark	\checkmark
N_{b-jets}	\checkmark	\checkmark
$m(\tau, \text{jet})_{0,1}$		\checkmark
$m(\ell, \text{jet}), m(\tau_{\text{had}}, \text{jet})$	\checkmark	
$\Delta R(\tau, \text{jet})$	\checkmark	\checkmark
$\Delta \phi(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	\checkmark	
$E_{\rm T}^{\rm miss} \phi$ centrality	\checkmark	\checkmark

Eur. Phys. J. C 83 (2023) 1075

Double production: $t\ell t\ell$

Search targeting down-type scalar leptoquarks with 3rd generation couplings to quarks and 1st & 2nd generation couplings to leptons

First time interpretation in context of iso-singlet LQ with charge +5/3*e*

Signature is at least three leptons (e, μ) plus at least one *b*-jets.

Main backgrounds:

 conversion electrons (Internal/material)

Eur. Phys. J. C 84 (2024) 818

Double production: $t\ell t\ell$

Binned fit in *effective mass* $m_{eff} = p_T^{\text{light leptons}} + p_T^{\text{jets}} + p_T^{\text{miss}}$

Eur. Phys. J. C 84 (2024) 818

Charged-lepton-flavour violation in top decays

Leptoquark search and EFT interpretation in $\mu \tau q t$ interactions

Search for events with **two same-sign muons**, a **hadronic tau**, at least **one jet** and exactly **one** *b***-jet**.

Limits set on six LFV EFT operator Wilson Coefficients and on scalar leptoquark

Main backgrounds:

- *tt*
- *ttV*
- **Diboson** (WW, WZ)
- non-prompt muons
- Mis-ID taus

			_
Enriched	in	signal	

	SR	CRτ	$\mathbf{CR} t \bar{t} \mu$
Lepton flavour	2µ1	$ au_{ m had}$	$2\mu 1e \ (\ell_3 = \mu)$
$N_{ m jets}$	≥ 1	≥ 2	≥ 1
$N_{b-{\rm tags}}$	1	1	≤ 2
$ au_{\rm had} p_{\rm T}$	> 20 GeV	> 20 GeV	_
Muon $p_{\rm T}$	> 15 GeV	> 15 GeV	> 10 GeV
Higher $p_{\rm T}$ muon	Tight	Tight	Tight
Lower $p_{\rm T}$ muon	Tight	Tight	Loose
Muon charges	SS	OS	_
$m_{\mu\mu}^{\rm OS}$	_	_	>15 GeV
$ m_{\mu\mu}^{OS} - M_Z $	_	<10 GeV	>10 GeV
$3p_{\mathrm{T}}^{\mu_{1}} + \sum m_{\ell\ell}^{\mathrm{OS}}$	_	_	< 400 GeV

Used in data-driven

estimate of jets

misidentified as taus

Le contraction de la contracti

Charged-lepton-flavour violation in top decays

Leptoquark search and EFT interpretation in $\mu\tau qt$ interactions

Phys. Rev. D 110 (2024) 012014

Statistical Combination

Many of the ATLAS leptoquark searches are complementary, allowing for a statistical combination to produce more powerful overall limits

Separate combination for each leptoquark model

			Interp	pretation							
	Search		Sc	alar		١	/ector	Si	gnal Reg	ion	
Final State	Citation	LQ_3^u	LQ_3^d	LQ_{mix}^{u}	LQ_{mix}^d	$U_1^{\rm YM/MC}$	$\widetilde{U}_1^{\mathrm{YM/MC}}$	N_ℓ	$N_{ au_{ m had}}$	N _{b-jets}	SRs and CRs
τνbτ	<u>Phys.Rev.D 104 (2021) 11, 112005</u>	\checkmark	\checkmark	—	_	\checkmark	_	0	1	≥ 2	treated as being
bτbτ	Eur.Phys.J.C 83 (2023) 11, 1075	\checkmark	—	—	—	\checkmark	-	{0,1}	{1,2}	{1,2}	statistically
tτtτ	<u>JHEP 06 (2021) 179</u>	-	\checkmark	—	_	—	\checkmark	{1,2,3}	≥1	≥1	independent.
tvbł	<u>JHEP 2306 (2023) 188</u>	-	—	\checkmark	\checkmark	—	_	1	-	≥1	Systematics
blbl	JHEP 10 (2020) 112	-	—	\checkmark	—	—	_	2	-	{0,1,2}	correlated
tltl (2l)	Eur.Phys.J.C 81 (2021) 4, 313	-	—	_	\checkmark	—	_	2	_	—	whore possible
$t\ell t\ell \ (\geq 3\ell)$	<u>Eur.Phys.J.C 84 (2024) 8, 818</u>	-	_	_	\checkmark	—	_	{3,4}	_	≥ 2	where possible
τντν	<u>Eur.Phys.J.C 80 (2020) 8, 737</u>	\checkmark	_	√	_	\checkmark	_	0	0	≥ 2	
bvbv	<u>JHEP 05 (2021) 093</u>	_	\checkmark	—	\checkmark	—	_	0	_	≥ 2	

Statistical Combination

Up to 100 GeV improvement in limits

Heavy neutral leptons

Search for TeV-scale heavy Majorana neutrinos

High-energy equivalent of *neutrinoless double beta decay*

 $\,\circ\,\,$ Search for heavy neutrinos in type-I seesaw & Weinberg operator EFT

Two same-sign lepton plus two jet final state:

- $\,\circ\,\,$ VBS jet topology $\,
 ightarrow\,$ high m_{jj} & Δy_{jj}
- $\,\circ\,\,$ High p_T back-to-back leptons

Dimuon channel published in 2023 (Eur. Phys. J. C 83 (2023) 824)

ightarrow *new for this year,* searches in $ee \& e\mu$ channels

Main backgrounds:

- Same-sign W[±]W[±]jj
 W[±]Zjj
 Control regions defined
- Non-prompt/fake leptons
- Charge-flipped electrons

```
Data-driven estimates
```

Binned fit in sub-leading lepton p_T in SR & CRs

Phys. Lett. B 856 (2024) 138865

High mass LFV dilepton resonances

Search for lepton $pp \to X \to \ell^{\pm} \ell'^{\mp}$

Search targeting **high-mass**, **back-to-back** $e\mu$, $e\tau$, $\mu\tau$ pairs

Broad range of interpretations:

- $\circ Z'$ boson
- *τ*-sneutrinos in *R*-parity violating SUSY
- Quantum black holes (ADD & RS models)

Improvements on earlier analysis (Phys.Rev.D 98 (2018) 9, 092008)

- 4x luminosity
- Improved object reconstruction
- Improved background estimation
- Simultaneous fit to SRs and CRs

Improvement of 0.6, 0.3 and 0.4 TeV in $e\mu$, $e\tau$ and $\mu\tau$ on previous Z' limits

<u>JHEP 10 (2023) 082</u>

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

Measurement of *W*-boson branching ratios through analysis of $t\bar{t}$ leptonic decays (*ee*, $\mu\mu$, $e\mu$ plus one or two b-jets)

$$R_W^{\mu/e} = \frac{\operatorname{Br}(W \to \mu\nu)}{\operatorname{Br}(W \to e\nu)}$$

Systematic uncertainties in $t\bar{t}$ and background modelling cancel, but still limited by ID uncertainties on electrons & muons

Instead measure:

$$R_{WZ}^{\mu/e} = rac{R_W^{\mu/e}}{\sqrt{R_Z^{\mu\mu/ee}}}$$

Then convert
$$R_{WZ}^{\mu/e}$$
 back to $R_W^{\mu/e}$ using precision measurement of $R_Z^{\mu\mu/ee}$ made by LEP

The parameterisation used is somewhat complicated, see backup for detailed description

Ingredients for fit

- Number of $t\bar{t}$ events in ee, $\mu\mu$ and $e\mu$ channels
 - Separate counts for events with one *b*-jet and events with two *b*-jets
- Number of events in $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$
- \rightarrow Fit to eight regions

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

arXiv:2403.02133

RECENT LEPTON FLAVOUR RESULTS FROM ATLAS | NUFACT 2024 | BEN WILSON | 17/09/2024

Summary

Comprehensive leptoquark program targeting a range of benchmark models and value is maximised through statistical combinations

Ability to probe a broad variety of searches exotic physics models with LFV signatures, from heavy neutrinos to quantum black holes

Delivered precision measurements of the W boson branching ratios to set world leading constraints on lepton flavour universality

Further reading:

- Review of ATLAS exotics searches: <u>arXiv:2403.09292</u>
- List of ATLAS publications: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications</u>

Backup

Leptoquarks and their properties

Can be either be **Scalar** (spin-0) or **Vector** (spin-1)

Vector leptoquarks can have an additional **Yang-Mills** (YM) coupling to gluons, those that don't are referred to as having **Minimal Coupling** (MC)

Scalar leptoquarks which have charge 2/3e are called LQ^u and those with charge 1/3 are labelled LQ^d

Scalar leptoquarks which exclusively couple to the third generation are called $LQ_3^{u,d}$. Those which can also couple to 2nd and 1st generations are called $LQ_{mix}^{u,d}$

See review of LQs in <u>arXiv:1603.04993</u>

Double production: $\ell v b t$

Search focusing pair-production where **one LQ decays to a neutrino**

- $\circ~$ Up-type scalar and vector leptoquarks
- Down-type scalar leptoquarks

Signature is single high- p_T lepton, high E_T^{miss} & at least one b-jet

Signal-background separation done by **neural network** using <u>NeuroBayes</u>

 \rightarrow Applies Bayesian regularisation to input features to improve generalisation and reduce overtraining

Main backgrounds:

• *tt*

- Corrections applied from dedicated reweighting region
- $\circ~$ Single top

• W+jets

Dedicated control regions

Normalisations of $t\bar{t}$, single top and W+jets obtained from fit

Double production: *lvbt*

Leptoquark searches Double production: *tltl* - Summary of cuts

	3ℓ					
		CR		VR SR		
	$3\ell VV 3\ell ttZ$	3ℓIntC	3ℓMatC	3ℓVR	$3\ell SR-e$ $3\ell SR-\mu$	
e/μ selection		М	(SS pair), L	other		
e/μ combination	3	8e / 2e1μ / 2μ1	е / Зµ		3e / 2e1µ 3µ / 2µ1e	
Total charge	±1	_	-	±1		
e internal conversion	Yes	Inverted	Yes		Yes	
veto		$(\ell_1 \text{ or } \ell_2)$	$(\ell_1 \text{ and } \ell_2)$			
e material conversion	Yes	Yes Inverted		Yes		
veto		$(\ell_1 \text{ and } \ell_2)$	$(\ell_1 \text{ or } \ell_2)$			
Number of jets	≥ 2	≥ 0		≥ 2		
Number of b-jets	$1 \geq 2$	0		≥ 1		
p_{T}^{ℓ} [GeV]	> 20 (SS pair), > 10 other			> 20		
$m_{\ell^+\ell^-}^{OS-SF}$ [GeV]	> 12					
$ m_{\ell^+\ell^-}^{OS-SF} - m_Z $ [GeV]	< 10	> 10		> 10		
$ m_{\ell\ell\ell} - m_Z $ [GeV]	_	< 1	0		_	
$m_{\ell\ell}^{\min}$ [GeV]				< 200	≥ 200	
m _{eff} [GeV]		_		_	≥ 500	

	1					
	4ℓ					
	VR SR					
	4ℓVR	$4\ell SR-e$	$4\ell SR-\mu$			
e/μ selection		L				
e/μ combination	4e / 3e1µ / 2e2µ / 3µ1e / 4µ	$4e / 3e1\mu / 2e2\mu$ (lead <i>e</i>)	$4\mu / 3\mu 1e / 2\mu 2e$ (lead μ)			
Total charge	0					
Number of jets	≥ 2					
Number of b-jets	≥ 1					
p_{T}^{ℓ} [GeV]	> 10					
$m_{\ell^+\ell^-}^{OS-SF}$ [GeV]	> 12					
$ m_{\ell^+\ell^-}^{OS-SF} - m_Z $ [GeV]	> 10					
$m_{\ell\ell}^{\min}$ [GeV]	< 100	2	: 100			
m _{eff} [GeV]	_	≥	: 500			

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

 \leftarrow 1 b-tagged jet

 \leftarrow 2 b-tagged jets

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

 $tar{t} o \ \ell \ell$: Fit in m bins of $m_{\ell \ell}$; number of events in each bin given by

 $N_{1,m}^{\ell\ell} = L \sigma_{t\bar{t}} \epsilon_{\ell\ell} g_{\ell\ell}^{t\bar{t}} 2\epsilon_b^{\ell\ell} \left(1 - C_b^{\ell} \epsilon_b^{\ell\ell}\right) f_{1,m}^{\ell\ell,t\bar{t}} + \sum_{k=\text{bkg}} S_1^k g_{\ell\ell}^k f_{1,m}^{\ell\ell,k} N_1^{\ell\ell,k}$

 $N_{2,m}^{\ell\ell} = L \,\sigma_{t\bar{t}} \epsilon_{\ell\ell} g_{\ell\ell}^{t\bar{t}} C_b^{e\mu} (\epsilon_b^{e\mu})^2 f_{2,m}^{\ell\ell,t\bar{t}} + \sum_{k=bkg} s_2^k g_{\ell\ell}^k f_{1,m}^{\ell\ell,k} N_2^{\ell\ell,k}$

 $\epsilon_{\ell\ell}$: Opposite-sign $e\mu$ selection efficiency

 $g_{\ell\ell}^{tt}$: Term to account for possible deviations in simulated branching ratio

 $C_b^{\ell\ell}$: Correlation coefficient to account for the tagging of two b-jets not being completely independent (≈ 1)

k: Indexes over the four background sources: Wt, Z+jets, diboson and lepton mis-ID

 $S_{1,2}^{k}$: Scaling factors. Set to one for all backgrounds except $S_{1,2}^{Z+jets}$, which is a free parameter in the fit

 $g_{\ell\ell}^k$: Scaling factor to allow for changes to W or Z leptonic branching ratios

 $f_{1,2,m}^{\ell\ell,tt}$: Fraction of events appearing in each *m* bin of $m_{\ell\ell}$ for $t\bar{t}$ signal

 $f_{1,2,m}^{\ell\ell,k}$: Fraction of events appearing in each *m* bin of $m_{\ell\ell}$ for *k* background

 $N_{1,2}^{e\mu,k}$: Number of background k events in channel

(c)

Mis-ID lepto

m.... [GeV]

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

Reparametrize $R_W^{\mu/e}$ in terms of the average branching ratio in SM \overline{W} and deviation from SM Δ_W

$$R_W^{\mu/e} = \frac{\operatorname{Br}(W \to \mu\nu)}{\operatorname{Br}(W \to e\nu)} = \frac{\overline{W}(1 + \Delta_W)}{\overline{W}(1 - \Delta_W)}$$

 $\Delta_W = \frac{R_W^{\mu/e} - 1}{R_W^{\mu/e} + 1}$

Also need to account for $W \to \tau \to e/\mu$. Assuming $Br(W \to \tau \nu)$ is constant, then

$$g_{ee}^{t\bar{t}} = f_{0\tau}^{ee} (1 - \Delta_W)^2 + f_{1\tau}^{ee} (1 - \Delta_W) + f_{2\tau}^{ee}$$
$$g_{e\mu}^{t\bar{t}} = f_{0\tau}^{e\mu} (1 - \Delta_W) (1 + \Delta_W) + f_{1\tau}^{e\mu} + f_{2\tau}^{e\mu}$$
$$g_{\mu\mu}^{t\bar{t}} = f_{0\tau}^{\mu\mu} (1 - \Delta_W)^2 + f_{1\tau}^{\mu\mu} (1 - \Delta_W) + f_{2\tau}^{\mu\mu}$$

Where $f_{n\tau}^{\ell\ell}$ are the fractions in selected dilepton events where *n* leptons were the result of $W \to \tau \to e/\mu$. These fractions are determined from simulation

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

Reparametrize $R_Z^{\mu\mu/ee}$ in terms of the average branching ratio in SM \overline{Z} and deviation from SM Δ_Z

 $R_Z^{\mu\mu/ee} = \frac{\mathrm{Br}(Z \to \mu\mu)}{\mathrm{Br}(Z \to ee)} = \frac{\bar{Z}(1 + \Delta_Z)}{\bar{Z}(1 - \Delta_Z)}$

 $\bar{Z} = (R_Z^{\mu\mu/ee} - 1)/(R_Z^{\mu\mu/ee} + 1)$

Biases in lepton isolation efficiency in the busy hadronic environment of *Z*+*b*-jet events are accounted for by an additional ratio $R_{Z+b}^{\mu\mu/ee}$ and $\Delta_{Z+b} = (R_{Z+b}^{\mu\mu/ee} - 1)/(R_{Z+b}^{\mu\mu/ee} + 1)$

From this we can get the $g_{\ell\ell'}^k$ factors for Z+jets events:

 $g_{ee}^{Z+\text{jets}} = (1 - \Delta_Z)(1 - \Delta_{Z+b})$ $g_{e\mu}^{Z+\text{jets}} = 1$ $g_{\mu\mu}^{Z+\text{jets}} = (1 + \Delta_Z)(1 + \Delta_{Z+b})$

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

To reduce sensitivity to electron and muon identification uncertainties, fit not performed to $R_W^{\mu/e}$ directly, but to $R_{WZ}^{\mu/e}$ and $R_Z^{\mu\mu/ee}$

$$R_{WZ}^{\mu/e} = \frac{R_W^{\mu/e}}{\sqrt{R_Z^{\mu\mu/ee}}} = \frac{\operatorname{Br}(W \to \mu\nu)}{\operatorname{Br}(W \to e\nu)} \cdot \sqrt{\frac{\operatorname{Br}(Z \to ee)}{\operatorname{Br}(Z \to \mu\mu)}}$$

By dividing by $\sqrt{R_Z^{\mu\mu/ee}}$ we get exactly one power of muon & electron ID efficiencies in both numerator and denominator

 $R_Z^{\mu\mu/ee}$ is determined from counting events in inclusive $Z \to \ell \ell$ data. N_Z^{ee} and $N_Z^{\mu\mu}$ given by:

$$N_Z^{ee} = L\sigma_{Z \to \ell \ell} \epsilon_{Z \to ee} (1 - \Delta_Z) + \sum_{k=\text{bkg}} s_Z^k N_Z^{ee,k}$$

$$N_Z^{\mu\mu} = L\sigma_{Z \to \ell\ell} \epsilon_{Z \to \mu\mu} (1 + \Delta_Z) + \sum_{k=\text{bkg}} s_Z^k N_Z^{\mu\mu,k}$$

Where:

 $\epsilon_{Z \rightarrow ee} \& \epsilon_Z \rightarrow \mu \mu$: Selection efficiencies

k: Indexes over backgrounds: diboson, $Z \rightarrow \tau \tau \rightarrow ee/\mu\mu$, $t\bar{t}$, Wt and mis-ID leptons. Backgrounds determined from simulation except for mis-ID leptons which were determined from a data driven estimate

 $s_Z^{t\bar{t}}$: Scaled to fitted value of $\sigma_{t\bar{t}}$, all other s_Z^k values set to unity

Precision test of lepton flavour universality in $W \rightarrow ev$ and $W \rightarrow \mu v$ deacys

The fit is done to the observed event counts $N_1^{e\mu}$ and $N_2^{e\mu}$ in the $t\bar{t} \rightarrow e\mu$ channel, observed event counts in bins of $m_{\ell\ell}$ in the $t\bar{t} \rightarrow ee/\mu\mu$ channels $N_{1,m}^{\ell\ell}$, $N_{2,m}^{\ell\ell}$ and the observed number of events in $Z \rightarrow \ell\ell$ channels N_Z^{ee} , $N_Z^{\mu\mu}$

There are 10 fitted parameters:

- $\circ \sigma_{tar{t}}$
- $\circ \sigma_{Z \to \ell \ell}$
- $\circ R_{WZ}^{\mu/e}$
- $\circ R_Z^{\mu\mu/ee}$
- The three b-tagging efficiencies $\epsilon_b^{\ell\ell'}$
- The scale factors s_1^{Z+jets} , s_2^{Z+jets}
- Z+jets isolation efficiency parameter $R_{Z+b}^{\mu\mu/ee}$

Apart from integrated luminosity and mis-ID lepton background all other parameters are determined from simulation From the fit it was found that:

$$R_{WZ}^{\mu/e} = 0.9990 \pm 0.0022 \pm 0.0036$$

$$R_Z^{\mu\mu/ee} = 0.9913 \pm 0.0002 \pm 0.0045$$

Use more precise LEP & SLD measurement of $R_{Z-\text{ext}}^{\mu\mu/ee} = 1.0009 \pm 0.0028$ for final calculation of $R_W^{\mu/e}$

$$R_W^{\mu/e} = R_{WZ}^{\mu/e} \sqrt{R_Z^{\mu\mu/ee}} = 0.9995 \pm 0.0022 \text{ (stat)} \pm 0.0036 \text{ (syst)} \pm 0.0014 \text{ (ext)}$$

Single production: $b\tau\tau$

Select events containing a *b*-jet and $\tau_{lep}\tau_{had}$ or $\tau_{had}\tau_{had}$ pair

Consider vector leptoquarks with charge 2/3*e* and scalar leptoquarks with charge 4/3*e*

Non-resonant leptoquark interference with SM at low *b*-jet p_T

Unclear how to model and very model dependent

- \rightarrow Perform search for leptoquarks in high *b*-jet p_T SR
- \rightarrow Perform model-independent search in both high/low *b*-jet p_T SRs

Main backgrounds:

- $t\bar{t}$ & single top
- $Z/\gamma^* \rightarrow \tau_{had}\tau_{had}$ _
- Jets faking leptons Data-driven estimates

Modelled by MC with corrections derived from dedicated CRs

Double production: $b\tau b\tau$

High mass LFV dilepton resonances Search for lepton $pp \rightarrow X \rightarrow \ell^{\pm} \ell'^{\mp}$

Search targeting high-mass $e\mu$, $e\tau$, $\mu\tau$ pairs

Three interpretations:

- $\circ Z'$ boson
- *τ*-sneutrinos in *R*-parity violating SUSY
- Quantum black holes (ADD & RS models)

Main Backgrounds:

• *WW*

- normalisations obtained from fit
- **Fake/non-prompt leptons**] Data-driven estimate
- W+jets } Sizable in τ -channels where jet fakes a lepton. Dedicated CR to extrapolate yields to SR

Region	Channels	Requirements			
Nominal $\Delta \phi_{\ell \ell'}$					
SR tī CR	$e\mu, e\tau$ and $\mu\tau$ $e\mu, e\tau$ and $\mu\tau$	$ \Delta \phi_{\ell\ell'} > 2.7, \text{ no } b\text{-jet}, m_{\ell\ell'} > 600 \text{ GeV} \Delta \phi_{\ell\ell'} > 2.7, \text{ at least one } b\text{-jet}, m_{\ell\ell'} > 600 \text{ GeV} $			
Reversed $\Delta \phi_{\ell \ell'}$					
$ Low \Delta \phi_{\ell\ell'} t\bar{t} CR WW CR $	е µ е µ	$ \begin{vmatrix} \Delta \phi_{\ell \ell'} < 2.7, \text{ at least one } b \text{-jet, } m_{\ell \ell'} > 600 \text{ GeV} \\ \Delta \phi_{\ell \ell'} < 2.7, \text{ no } b \text{-jet, } m_{\ell \ell'} > 600 \text{ GeV} \end{aligned} $			

High mass LFV dilepton resonances

Search for lepton $pp \to X \to \ell^{\pm} \ell'^{\mp}$

