The Mu2e experiment

Andrei Gaponenko (Fermilab) on behalf of the Mu2e Collaboration $\mu \rightarrow e$ conversion:

Initial state: muonic atom at rest

Final state: electron + intact nucleus

Conventional normalization: $R_{\mu e} = \Gamma(\text{conversion})/\Gamma(\text{capture})$

Theoretical features

- νSM: R_{µe} ~ 10⁻⁵²: no theory uncertainty
- Sensitivity to broad range of BSM models
 Plenary talk by S. Middleton

Experimental features

- Signal: electron at 104.97 MeV (Al)
- Single particle—scales well with μ rate

Extremely powerful probe of BSM

Mu2e goals

- Aim for a factor of 10 increase in the mass reach
 - Think Tevatron-to-LHC like advancement
- Best previous measurement (SINDRUM II, gold nucleus): R_{µe} < 7 × 10⁻¹³ 90% CL [Eur.Phys.J C47(2006)]
- Indirect search: must improve sensitivity by 10⁴
 - ► Single event sensitivity goal 3 × 10⁻¹⁷
- Many models predict $\mu N \rightarrow eN$ signal in this range!

Theory reviews:

- Y. Kuno, Y. Okada, Rev.Mod.Phys. 73 (2001) 151-202
- M. Raidal et al., Eur.Phys.J. C57 (2008) 13-182
- A. de Gouvêa, P. Vogel, Prog.Part.Nucl.Phys. 71 (2013) 75-92
- L. Calibbi, G. Signorelli, Riv.Nuovo Cim. 41 (2018) no.2, 71-174

From SINDRUM II to Mu2e

SINDRUM II:

- O(10⁷) muon stops per second
- ▶ with O(1 MW) proton beam
- Mu2e single event sensitivity goal 3 × 10⁻¹⁷
- ▶ Need $O(10^{18})$ muon stops
 - thousands years of data taking?
 - GW proton beam is not an option...

A more energy efficient way to get the rate

R.M. Dzhilkibaev, V.M. Lobashev, Sov.J.Nucl.Phys 49, 384 (1989)

Instead of this

Solenoidal *B* field confines soft pions. Collect their muons. Mu2e: $> 10^{10} \mu^{-}$ /s from only 8 kW of protons!

Andrei Gaponenko

The concept of the measurement

Make muons

- Collect and stop them
- Wait for prompt backgrounds to decay
- Look for electrons at conversion energy

Mu2e setup

Muon beamline: B 4.5 \longrightarrow 1 T, negative gradient Tracker+calo region: uniform B = 1 T Muon charge selection using a rotating collimator Symmetric detectors: measure e^- and e^+

Not shown: Cosmic Ray Veto, beam Extinction Monitor, Stopping Target Monitor

Mu2e setup

Muon beamline: B 4.5 \rightarrow 1 T, negative gradient Tracker+calo region: uniform B = 1 T Muon charge selection using a rotating collimator **Symmetric detectors: measure** e^- and e^+ Not show the Measure pion background in data Stoppir Search for $\Delta L = 2$ process $\mu^- N \rightarrow e^+ N'$

How to measure 3×10^{-17}

Be blind to most tracks: annular design

Precise momentum measurement

- About 3 m long in 1 T B field
- "Good" tracks make 1.5–2 turns
- Low mass straw tubes in vacuum

Calorimeter

Particle ID to suppress some backgrounds

Two disk geometry

Csl crystals, SiPM readout

Also provides precise timing, alternate track seed.

Types of backgrounds

Muon induced

- Muon decay in orbit (DIO)
- Proton beam related
 - Radiative pion capture
 - Muon decay in flight
 - Pion decay in flight
 - Beam electrons
- Long transit through muon beamline
 - Antiprotons

Cosmic rays

Decay electron spectra

Decay in orbit

Tracker momentum resolution

Mu2e simulation*

Beam related backgrounds

Proton pulse spacing $\approx 2 \times$ muonic Al lifetime = 864 ns

Beam extinction (fraction of protons between pulses): Mu2e requires $\epsilon < 10^{-10}$

Need continuous monitoring of beam quality.

Andrei Gaponenko

Mu2e beam extinction monitor

Observe charged secondaries from the production target, accumulate time profile

(The rest of Mu2e is off the slide to the left and away.)

Andrei Gaponenko

Extinction monitor detector

- Permanent magnet pixel spectrometer
- Based on ATLAS IBL silicon pixel chips

Cosmic background

 A cosmic muon track can look like a 105 MeV/c electron track A cosmic muon can decay, or knock out an electron from detector material

- 1 event per day without counter-measures
- Vetoing cosmic muons is crucial
- Aim for as much coverage as possible

Cosmic Ray Veto

- Four layers of scintillator counters with aluminum absorbers
- SiPM readout
- Veto will be applied offline

Andrei Gaponenko

Mu2e status

Solenoids

Solenoids

PS assembled Will arrive this fall

Solenoids

PS assembled Will arrive this fall

DS cold mass ready Arrival summer 2025

Tracker

Calorimeter

Progress across all Mu2e areas

- All CRV module produced
- All Extinction Monitor planes produced
- Demonstrated readout from a part of each subdetector
- DAQ integration "global run" tests started this spring (subsets of channels)
- Started tests of proton beam slow extraction with final+prototype septum

Mu2e schedule

- Start cosmic ray commissioning of tracker, calorimeter, and part of CRV in Mu2e Hall in spring 2025. The detectors will be outside of the solenoid bore.
- Work on solenoid commissioning proceeds in parallel
- When solenoids are ready:
 - move tracker and calorimeter inside
 - commission in vacuum and with B field
 - keep taking cosmic ray data while finishing installation and waiting for beam
- Take Run I physics data with beam in 2027
- Resume after Fermilab Accelerator Long Shutdown that starts in 2028

Run I backgrounds and discovery reach

- Run I goal is × 1000 improvement over SINDRUM-II
- Expect single event sensitivity R_{µe} = 2.4 × 10⁻¹⁶ at ≈ 0.1 events background
- 5σ discovery for $R_{\mu e} = 1.5 \times 10^{-15}$ with 5 events
- or 90% CL limit of 6.2 × 10⁻¹⁶

Universe 2023, 9, 54

Andrei Gaponenko

Conclusion

- Mu2e will test the physics of flavor and generations.
- Excellent physics potential
 - Aim for × 10 mass scale reach improvement (4 orders of magnitude advance on the conversion rate with full dataset)
- Mu2e is completing detector and solenoid construction and entering the installation stage. On track to
 - Start cosmic commissioning in spring 2025
 - Take a year of physics data in 2027 (Run I)
- ► Expect 3 orders of magnitude improvement from Run I: $R_{\mu e} = 2.4 \times 10^{-16}$ single event sensitivity at ≈ 0.1 events background

Extra slides

Mu2e Run I backgrounds

Universe 2023, 9, 54

Channel	Mu2e Run I
SES	$2.4 imes 10^{-16}$
Cosmic rays	$0.046 \pm 0.010 \text{ (stat)} \pm 0.009 \text{ (syst)}$
DIO	$0.038 \pm 0.002 \; ({ m stat}) {}^{+0.025}_{-0.015} \; ({ m syst})$
Antiprotons	0.010 ± 0.003 (stat) ± 0.010 (syst)
RPC in-time	0.010 ± 0.002 (stat) $^{+0.001}_{-0.003}$ (syst)
RPC out-of-time ($\zeta = 10^{-10}$)	$(1.2 \pm 0.1 \text{ (stat)} ^{+0.1}_{-0.3} \text{ (syst)}) \times 10^{-3}$
RMC	$<$ 2.4 $ imes$ 10 $^{-3}$
Decays in flight	< 2 $ imes$ 10 ⁻³
Beam electrons	$< 1 imes 10^{-3}$
Total	0.105 ± 0.032

Items on the critical path to first physics

Component	Notes
Detector solenoid	Delivered, installed, cooled and powered
Inner detectors	Inserted into solenoid
External shielding	installation
Final focus	installation
Cosmic ray veto	Construct supports, install
Hatch blocks	Install
Accelerator readiness rev.	Before completion of hatch blocks
Beam to experiment	Soon after completion of hatch blocks

slide by B. Casey

History of muon CLFV searches...

Andrei Gaponenko

34

Current best $\mu N \rightarrow eN$ limit

SINDRUM II experiment at PSI

Conversion on gold: $R_{\mu e} < 7 \times 10^{-13}$ 90% CL [Eur.Phys.J C47(2006)] Single event sensitivity $S_{\mu e}^{1} = 2.5 \times 10^{-13}$

Expected rates

► Observation of $\mu \rightarrow e$ conversion would be an unambiguous signal of New Physics

Mu2e mass scale reach example

Combination of couplings vs scalar leptoquark mass

The breadth of the physics reach

"Flavor physics DNA matrix":

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^{0} - \bar{D}^{0}$	***	*	*	*	*	***	?
€K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}(B \to X_s \gamma)$	*	*	*	***	***	*	?
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \rightarrow K^{(*)} v \bar{v}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e\gamma$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g - 2)_{\mu}$	***	***	**	***	***	*	?

$\mu \rightarrow e$: broad discovery sensitivity!

Understanding the tracker

First principle hit simulation

- Gas cluster formation
- Drift
- Avalanche amplification
- Signal propagation along the wire
- Analog and digital electronics response
 - Saturation, deadtime, cross-talk, bandwidth, electronics noise...
- Detector-like output hits
- Resolution and efficiency are emergent effects

Tracker energy loss calibration

Double-pass cosmic rays

