

1

Electromagnetic moments of the τ lepton with CMS

Cécile Caillol (CERN), on behalf of the CMS experiment

NuFact, September 2024

HIGGS AND ELECTROWEAK | NEWS

CMS closes in on tau g-2

<u>CERN Courier</u>

19 March 2024

A report from the CMS experiment

The CMS experiment. Credit: J Hosan / OPEN-PHO-LIFE-2019-022-5

The CMS collaboration has reported the first observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions. The results set a new benchmark for the tau lepton's magnetic moment, surpassing previous constraints and paving the way for studies probing new physics.

τ g-2 less well known than e and μ g-2...

• Tau leptons have a very short lifetime and cannot be stored in storage rings

- Limit from PDG dates back 20 years (LEP) and is about 20 times the Schwinger term
- Many orders of magnitude less precise than e and μ g-2 measurements!

• If BSM effects scale with the squared lepton mass (m_{ℓ}^2) , deviations from the SM could be 280 times larger than for a_{μ}

At the LHC: τ moments from $\gamma\gamma \rightarrow \tau\tau$ events

• τ g-2 can be indirectly probed from $\gamma \tau \tau$

vertex

• Photon-induced processes: $\gamma\gamma \rightarrow \tau\tau$ includes 2

$\gamma \tau \tau$ vertices

• Constraints on τ electromagnetic moments from effective field theory approach (SMEFT) based on (differential) cross section measurement of $\gamma\gamma \rightarrow \tau\tau$

Photon-induced processes at the LHC

- Two charged particles (e.g. protons or ions) passing each other at relativistic velocities generate intense electromagnetic fields → photon-photon collisions can happen
- Typically study "head-on" collisions but rare photon-induced processes can be studied in ultraperipheral collisions
- Protons losing some of their energy to the photons are slightly deflected
- Cross section proportional to $Z^4 \rightarrow$ huge enhancement of photon-induced processes in Pb-Pb (Z = 82) runs compared to pp runs

pp collisions with track counting

- If energy too low for protons to be in PPS acceptance, the only way to identify photon-induced processes is through a vertex with very little track activity
- Photon-induced processes are exceptionally clean but proton-proton collisions are incredibly busy
 - \rightarrow challenging to identify a vertex among all pileup interactions

Counting tracks

- Define **z position of di-tau vertex** as average z position of selected tau leptons
- Define N_{tracks} as the number of tracks
 - with p_{T} > 0.5 GeV and $|\eta|$ < 2.5
 - within a window of **0.1 cm** around the di-tau vertex
 - Excluding tracks from tau leptons

Simulations cannot model track multiplicity accurately \rightarrow

correct them using data

 About 30% of the windows at the center of the beamspot do not contain any pileup track

Signature

- 2 diffracted protons
 - Could be reconstructed in PPS if $m_{\tau\tau} \gtrsim 350 \text{ GeV} \rightarrow \text{low signal}$ acceptance
 - Decided not to require diffracted protons in the analysis

Signature

Signature

CMS Experiment at the LHC, CERN Data recorded: 2018-May-01 13:53:45.602112 GMT Run / Event / LS: 315512 / 65277407 / 69

 $\pi^+\pi^-\pi^-$

• m_{vis} distributions in the different final states after the maximum likelihood fit, assuming SM a_{τ} and d_{τ}

• Signal visible in high m_{vis} bins

- 5.3 σ observed, 6.5 σ expected
- First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions

• N_{tracks} distribution for events with $m_{vis} > 100 \text{ GeV}$

• We can model well the N_{tracks} distribution for backgrounds

 The signal is seen as an excess of events at very low N_{tracks}

Constraining τ g-2 with an effective field theory

• Two dimension-6 operators modify a_{τ} at tree-level in the SMEFT:

$$\mathcal{L}_{\text{BSM}} = \frac{C_{\tau B}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R H B_{\mu\nu} + \frac{C_{\tau W}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R \sigma^i H W^i_{\mu\nu} + \text{h.c.}$$

• BSM contributions to a_{τ} :

$$\delta a_{\tau} = rac{2m_{ au}}{e} rac{\sqrt{2}v}{\Lambda^2} \operatorname{Re}\left[C_{ au\gamma}
ight]$$

SMEFT-sim_general alphaScheme_UFO

where
$$C_{\tau\gamma} = \left(cos\theta_W C_{\tau B} - sin\theta_W C_{\tau W} \right)$$

How BSM physics in a_{τ} affects $\gamma\gamma \rightarrow \tau\tau$

- At large m_{ττ}, γγ→ττ cross section increases with both positive and negative variations to a_τ
- The effect grows with $m_{\tau\tau}$
- We can constrain a_{τ} by looking at the yield and $m_{\tau\tau}$ distribution of the $\gamma\gamma \rightarrow \tau\tau$ process
- Expect better BSM sensitivity than with Pb-Pb runs because of higher $m_{\tau\tau}$ range probed

• Changing a_{τ} from its SM value modifies the $\gamma\gamma \rightarrow \tau\tau$ prediction

Differences between SM and BSM a_{τ} scenarios increase with m_{vis}

• a_{τ} can be constrained from the same m_{vis} distributions used to observe

Extracting a_{τ}

 1σ uncertainty of 0.003

Only 3 times the Schwinger term!

Comparing to previous results

Large improvement

over LEP and LHC Pb-Pb

Conclusion

- The LHC is also a high energy photon collider
- The CMS experiment can indirectly probe the τ g-2 in photon-induced collisions ($\gamma\gamma \rightarrow \tau\tau$) both in PbPb and pp runs

- The CMS Collaboration has observed, for the first time, $\gamma\gamma \rightarrow \tau\tau$ events in pp runs
- These events were used to constrain the tau g-2: -0.0042 < a_{τ} < 0.0062 at 95% CL, improving previous constraints on tau g-2 by almost an order of magnitude

The precision journey has just started...

DELPHI	СМS pp	More precision needed to
OPAL	Approaching the	probe BSM effects scaling
Pb-Pb LHC	Schwinger term!	with m_{ℓ}^2

... and CMS will be a part of it

The majority of CMS data has not been collected yet. Exciting complementary approaches for upcoming Runs!

22

The LHC is (also) a photon collider

At intermediate masses, pp takes over

but need to handle pileup

Final states and categories

• 4 di-tau final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$

 $au_{
m h} 64.8\%$ $au_{
m h} au_{
m h}$ 42% $\mu \ 17.4\%$ $rac{\mu\mu}{3\%}$ $\mu au_{
m h}$ 23% $\mathrm{e} au_{\mathrm{h}}$ \mathbf{e} 3% 6%17.8%23% \mathbf{e} μ $au_{
m h}$ 64.8%17.8% 17.4%

- In each di-tau final state, 2 signal regions: N_{tracks} = 0 or 1
 - $N_{tracks} = 0$: ~50% of the signal, inclusive backgrounds reduced by $O(10^3)$
 - N_{tracks} = 1: ~25% of the signal, larger background

• Dimuon control region to derive corrections to the simulations

Dominant backgrounds

• $Z/\gamma^* \rightarrow \tau\tau$ (Drell-Yan)

- Same final state as the signal but more tracks at the vertex (from hard scattering)
- Resonant ditau production → ditau mass
 peaks at Z mass
- Taus are rather back-to-back (low acoplanarity) but less so than for the signal
- Estimated from simulation with datadriven corrections

• Jet mis-ID (QCD, W+jets, ...):

- When a jet is misreconstructed as a tau
- Data-driven estimation (no reliable MC prediction)
- Nonresonant, mass distribution similar to that of the signal

Jets misidentified as $\tau_{\rm h}$

- Hadronically decaying taus (τ_{h}) are reconstructed as 1 or

3 tracks with energy deposits in the calorimeters

- Typically look like quark- and gluon-jets
- Main handles to separate τ_{h} and jets:
 - τ_h are more isolated (less activity around)
 - τ_h are slightly displaced (from τ lifetime)
- Information used in a neural net

Jet $\rightarrow \tau_h$ mis-ID background (1)

• Measure "mis-ID factor", MF, for jets as

MF =

N(jets passing nominal τ_h ID)

N(jets failing nominal τ_h ID but passing very loose τ_h ID)

• In data control regions (e.g. require SS leptons/ τ_h to enrich in QCD multijet events)

• To estimate background in the SR, select events passing the SR selection except the τ_h fails the nominal τ_h ID and reweigh them with MF

But it is not that simple... How does N_{tracks} affect MF?

Jet $\rightarrow \tau_h$ mis-ID background (2)

- If there is less track activity around the τ_{h} candidate:
 - The τ_h candidate is more isolated
 - It is more likely to pass the ID criteria
 - MF is higher

- Model N_{tracks} dependence with a multiplicative correction to the mis-ID rates
 - Parameterized with exponential at low N_{tracks}

Pileup track multiplicity correction

- Can simulations describe accurately the number of pileup tracks within windows of 0.1 cm width all over the z axis?
- Compare N_{tracks} distribution in Z→μμ data and
 Z→μμ MC, inside windows sampled over the z axis far (> 1cm) from the μμ vertex

Pileup track multiplicity correction

Hard scattering track multiplicity correction

- Can the Drell-Yan simulation describe accurately the number of tracks from the hard interaction in windows of 0.1 cm width?
- Compare N_{tracks} distribution in Z→μμ data and
 Z→μμ MC (subtracting elastic processes),
 inside window centered at the μμ vertex

- Compare number of reconstructed tracks in data and in DY simulation at the $\mu\mu$ vertex
- These tracks can come from pileup or from the hard interaction
- Split simulation based on the number of reconstructed tracks associated to the hard interaction, and rescale all components simultaneously to match the data

Simulated Drell-Yan events with no reconstucted track associated to the hard interaction in the $\mu\mu$ window should be assigned a weight of ~0.6

Interlude: τ decay and reconstuction

- Leptonic τ decays (~35%): 1 electron or 1 muon + 2 neutrinos
 - Reconstructed as standard electrons and muons
- Hadronic τ decays (τ_h , ~65%): 1 or 3 charged hadrons + sometimes p0s + 1 neutrino
 - Reconstructed as 1 or 3 tracks with energy deposits in the calorimeters
- Always missing energy in the detector from escaping neutrinos

Decay mode	Meson resonance	B[%]	
$ au^- ightarrow { m e}^- \overline{ u}_{ m e} u_{ au}$		17.8	
$\tau^- ightarrow \mu^- \overline{ u}_\mu u_ au$		17.4	
$\tau^- \rightarrow h^- \nu_{\tau}$		11.5	1 propa
$ au^- ightarrow { m h}^- \pi^0 u_ au$	$\rho(770)$	26.0	I prong
$\tau^- ightarrow \mathrm{h}^- \pi^0 \pi^0 \nu_{ au}$	a ₁ (1260)	9.5	~47%
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- u_ au$	$a_1(1260)$	9.8	3 prongs
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- \pi^0 u_ au$		4.8	~15%
Other modes with hadrons		3.2	
All modes containing hadrons		64.8	

Analyses with τ leptons are difficult because of variety of possible decays, and large backgrounds mimicking τ signature

The high energy regime – pp collisions with proton tagging

- PPS is a forward detector situated ~200 meters away from CMS (1 PPS arm on each side)
- Can tag diffracted protons that have lost a small fraction of their energy
- Proton kinematics (from PPS) correlated to kinematics of central system (from CMS) → powerful handle to reduce backgrounds

$\gamma\gamma \rightarrow \tau\tau$ in PbPb ultraperipheral collisions

 γγ→ττ observed recently in Pb-Pb collisions by both CMS and ATLAS

- Clean channel with small background
 contributions
- Accessing phase space with $m_{\tau\tau} \lessapprox 25 \text{ GeV}$

Including (semi-)dissociative contributions

- Elastic-elastic (ee) signal process modeled with gammaUPC
- Single-dissociative (sd) and double-dissociative (dd) processes have larger cross section and may end up with an exclusive signature → rescale elastic signal to include these contributions
- Scaling factor = $(ee + sd + dd)_{obs} / ee_{sim}$ can be measured with $\gamma\gamma \rightarrow \mu\mu$ in the $\mu\mu$ CR and applied to $\gamma\gamma \rightarrow ee/\mu\mu/\tau\tau/WW$ in the signal region

Including (semi-)dissociative contributions

- Elastic $\gamma\gamma \rightarrow \mu\mu/WW$:
 - Estimated with gammaUPC
 - Rescaled with linear $m_{\mu\mu}$ function to match data

Elastic simulation should be scaled by ~2.7 to describe all photoninduced contributions

Compatible with SuperChic predictions

Observation of $\gamma\gamma \rightarrow \tau\tau$

• 5.3 σ observed, 6.5 σ expected

• First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp runs

	Observed	Expected
еμ	2.3 σ	3.2 σ
eτ _h	3.0 σ	2.1 σ
μτ _h	2.1 σ	3.9 σ
$\tau_h \tau_h$	3.4 σ	3.9 σ
Combined	5.3 σ	6.5 σ

Leading systematics

Acoplanarity correction

- The Drell-Yan simulation does not model well the acoplanarity distribution in the dimuon control region
- Correction taken as Obs./Exp. Ratio in dimuon control region and applied in ditau signal region

 $\Delta \phi$

π

40

Strategy

- In each of the 8 categories (eµ, eτ_h, µτ_h, τ_hτ_h) x (N_{tracks} =0, N_{tracks} =1), fit visible invariant mass of tau pair (m_{vis})
 - S/B ratio increases with m_{vis} because Drell-Yan background concentrated at lower masses and signal is nonresonant

Drell-Yan Z/γ* \rightarrow ττ/ee/μμ	$Jet \rightarrow e/\mu/\tau_h mis-ID$	Exclusive γγ→ee/μμ/WW	γγ→ττ
Resonant	Non-resonant	Small but at low N _{tracks}	Signal, non resonant
From simulation	From data	From elastic simulation	From elastic simulation

Strategy

- In each of the 8 categories (eµ, eτ_h, µτ_h, τ_hτ_h) x (N_{tracks} =0, N_{tracks} =1), fit visible invariant mass of tau pair (m_{vis})
 - S/B ratio increases with m_{vis} because Drell-Yan background concentrated at lower masses and signal is nonresonant

In the signal regions, also require
$$A = 1 - \frac{|\Delta \phi|}{\pi} < 0.015$$
 and N_{tracks} = 0 or 1

Applying these corrections to $Z/\gamma^* \rightarrow \tau \tau$ simulation

• Good data/MC agreement in N_{tracks} distribution in all di-tau final states for the DY-enriched region with $m_{vis} (\tau, \tau) < 100 \text{ GeV}$

Limits on Wilson coefficients

