

Neutrinos from Natural Sources at JUNO

Iwan Morton-Blake

On behalf of the JUNO collaboration

NuFact 20/09/2024 Argonne National Laboratory, Chicago

Jiangmen Underground Neutrino Observatory

Jiangmen Underground Neutrino Observatory

JUNO Physics Goals

Primary Physics Goal: Determine Neutrino Mass Ordering (NMO)

#187. JUNO - Davide Basilico

JUNO : Neutrinos from Nuclear Reactors

Medium/Long baseline reactor experiments

($\overline{\nu}_e$ survival averaged over reactor energy spectrum)

JUNO's nearest nuclear reactors

"Potential to Identify the Neutrino Mass Ordering with Reactor Antineutrinos in JUNO," arXiv:2405.18008 (2024)

"Sub-percent precision measurement of neutrino oscillation parameters with JUNO," Chin. Phys. C 46 (2022)

JUNO : Reactor Neutrinos

 $P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $\Delta m_{ii}^2 L$ 5

<u>"Potential to Identify the Neutrino Mass Ordering with</u> Reactor Antineutrinos in JUNO," arXiv:2405.18008 (2024)

JUNO : Reactor Neutrinos

<u>"Sub-percent precision measurement of neutrino</u> oscillation parameters with JUNO," Chin. Phys. C **46** (2022)

 $P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \sin^2 2\theta_{13} \left(\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{AE}$

<u>"Potential to Identify the Neutrino Mass Ordering with</u> <u>Reactor Antineutrinos in JUNO," arXiv:2405.18008</u> (2024)

JUNO : Reactor Neutrinos

Separate NO vs IO

<u>"Sub-percent precision measurement of neutrino</u> oscillation parameters with JUNO," Chin. Phys. C **46** (2022)

> Precisely measure Δm_{21}^2 , Δm_{31}^2 , θ_{12}

<u>"Potential to Identify the Neutrino Mass Ordering with</u> Reactor Antineutrinos in JUNO," arXiv:2405.18008 (2024

JUNO : Reactor Neutrinos

Separate NO vs IO

<u>"Sub-percent precision measurement of neutrino</u> oscillation parameters with JUNO," Chin. Phys. C **46** (2022)

> Precisely measure Δm_{21}^2 , Δm_{31}^2 , θ_{12}

Contents

1) The JUNO Detector

2) Natural neutrino sources

3) JUNO's expected performance

~650m overburden

20/09/2024

~650m overburden

20/09/2024

Iwan Morton-Blake | Neutrinos from Natural Sources at JUNO | NuFact 2024

Acrylic Vessel

17.7 m in radius

20 kilotons of liquid scintillator

~650m overburden

20/09/2024

~650m overburden

20/09/2024

20/09/2024

20/09/2024

Calibration in JUNO

Calibration house (not to scale)

Deployable calibration sources in JUNO

$\mathbf{Sources}/\mathbf{Processes}$	Type	Radiation
^{137}Cs	γ	$0.662 { m MeV}$
^{54}Mn	γ	$0.835 { m MeV}$
$^{60}\mathrm{Co}$	γ	$1.173+1.333{ m MeV}$
^{40}K	γ	$1.461 { m MeV}$
$^{68}\mathrm{Ge}$	e ⁺	annihilation $0.511 + 0.511$ MeV
241 Am-Be	n, γ	neutron + 4.43 MeV $(^{12}C^*)$
$^{241}Am^{-13}C$	n, γ	$neutron + 6.13 \text{ MeV} (^{16}\text{O}^*)$
$(\mathrm{n},\gamma)\mathrm{p}$	γ	$2.22 { m MeV}$
$(\mathbf{n},\!\gamma)^{12}\mathbf{C}$	γ	4.94 MeV or 3.68 + 1.26 MeV

Tune reconstruction and simulation with <u>deployable</u> <u>sources</u> & <u>naturally occurring interactions</u> in the detector

#47. Detector calibration in the JUNO experiment - Akira Takenaka

JUNO : Detector Comparison

"Prediction of Energy Resolution in the JUNO Experiment", arXiv:2405.17860 (2024)

JUNO: Energy Resolution	Stainless steel tank (18 m diameter) PATTs Buffer oil Outer balloon (13 m diameter) LS (00000) Inner balloon (3.08m diameter) Xe-LS PATTs Water	Nuco PUTS Internal PUTS Verter Tatis Verter Tatis Nuco PUTS		
< 3% @ 1MeV	KamLAND [1]	Borexino [2]	SNO+ [3]	JUNO
Target Mass [kilotons]	1.0	0.3 0.78		20
Number of PMTs	1900	2200	10,000	17,612 + 25,600
PMT Coverage	~34%	~30%	~50%	78%
Light Collection [photoelectrons/MeV]		~450	~520	~1600

Flux [cm⁻² s⁻¹ sr⁻¹ MeV⁻¹]

1

PeV

keV

GeV

10

keV

10

Flux [cm⁻² s⁻¹ sr⁻¹ MeV⁻¹]

1010

1

10-10

10-20

JUNO SENSITIVITY O(10kev) - O(10Gev)

Solar

keV

GeV

Geoneutrinos

PeV

10

Natural Neutrino Sources

JUNO Physics Programme

"Model Independent Approach of the JUNO ⁸B Solar Neutrino Program," Astrophys. J. 965 (2024) 2, 122.

<u>"Feasibility and physics potential of detecting ⁸B</u> solar neutrinos at JUNO," Chin. Phys. C **45** (2021)

Nuclear fusion within the sun produces v_e

Expected Flux

 $(\mathbf{i}$

"Model Independent Approach of the JUNO ⁸B Solar Neutrino Program," Astrophys. J. 965 (2024) 2, 122.

<u>"Feasibility and physics potential of detecting ⁸B</u> solar neutrinos at JUNO," Chin. Phys. C **45** (2021)

Nuclear fusion within the sun produces v_e

Expected Flux

 $(\mathbf{i}$

"Model Independent Approach of the JUNO ⁸B Solar Neutrino Program," Astrophys. J. 965 (2024) 2, 122.

"Feasibility and physics potential of detecting ⁸B solar neutrinos at JUNO," Chin. Phys. C 45 (2021)

Nuclear fusion within the sun produces v_e

10 years data-taking

(i

م. ا

Nuclear fusion within the sun produces v_e

<u>"Model Independent Approach of the JUNO ⁸B Solar Neutrino Program," Astrophys. J. 965 (2024) 2, 122.</u>

<u>"Feasibility and physics potential of detecting ⁸B solar neutrinos at JUNO," Chin. Phys. C **45** (2021)</u>

(i

Lower energy chains : Sensitivity highly dependent on background levels

Can probe the solar core – measurement of the solar metallicity

Expected Sensitivity

 (\mathbf{i})

 (\mathbf{i})

Lower energy chains : Sensitivity highly dependent on background levels

Can probe the solar core – measurement of the solar metallicity

 (\mathbf{i})

Lower energy chains : Sensitivity highly dependent on background levels

Can probe the solar core – measurement of the solar metallicity

JUNO Physics Programme

Geoneutrinos : \overline{v}_{e}

Decay of radionuclides (U/Th/K) within the Earth

- Can measure U and Th <u>abundances</u>.
- Measuring <u>U/Th ratio</u> in crust and mantle probes:
 - Earth's formation, mantle convection, plate tectonics, Earth's magnetic field production

JUNO physics and detector, Progress in Particle and Nuclear Physics 123 (2022) 103927

<u>Strati et al. Progress in Earth and Planetary Science</u> (2015) 2:5 DOI 10.1186/s40645-015-0037-6

A

Geoneutrinos : $\overline{\nu}_e$

Decay of radionuclides (U/Th/K) within the Earth

- Can measure U and Th <u>abundances</u>.
- Measuring <u>U/Th ratio</u> in crust and mantle probes:
 - Earth's formation, mantle convection, plate tectonics, Earth's magnetic field production

JUNO physics and detector, Progress in Particle and Nuclear Physics 123 (2022) 103927

Strati et al. Progress in Earth and Planetary Science (2015) 2:5 DOI 10.1186/s40645-015-0037-6

To date, total geo- $\overline{\nu}_e$ candidates: Borexino + KamLAND : ~200 events

JUNO expects ~400 geo- $\overline{\nu}_e$ interactions per year

6

Geoneutrinos : \overline{v}_e

Decay of radionuclides (U/Th/K) within the Earth

- > Can measure U and Th <u>abundances</u>.
- Measuring <u>U/Th ratio</u> in crust and mantle probes:
 - Earth's formation, mantle convection, plate tectonics, Earth's magnetic field production

JUNO physics and detector, Progress in Particle and Nuclear Physics 123 (2022) 103927

Strati et al. Progress in Earth and Planetary Science (2015) 2:5 DOI 10.1186/s40645-015-0037-6

To date, total geo- $\overline{\nu}_e$ candidates: Borexino + KamLAND : ~200 events

JUNO expects ~400 geo- $\overline{\nu}_e$ interactions per year

	Expected Sensitivity	ý	
Fit scenario	Sensitivity (6 ye	ars data-taking)	
J/Th ratio fixed	U+Th flux ~10%		
U/Th free	U+Th ~18%	U/Th ratio ~70%	

Publication under preparation

(i

<u>"Real-time monitoring for the next</u> <u>core-collapse supernova in JUNO",</u> <u>Journal of Cosmology and</u> Astroparticle Physics (2024)

99% of energy released in (anti-)neutrinos of <u>all flavours</u>

~3 CCSN per century in the Milky Way

Expected Event Rate (@10kpc)

Process	Num. Events (E _{thr} = 0.2MeV)
<u>IBD</u> $\overline{ u}_e + p ightarrow e^+ + n$	~5000
<u>pES</u> $\nu + p \rightarrow \nu + p$ ($(\overline{\nu}_{e,\mu,\tau})$)	~2000
eES $\nu + e \rightarrow \nu + e$ ($(\overline{\nu}_{e,\mu,\tau})$)	~400
CC $ \tilde{v}_e + {}^{12}C \to e^{-(+)} + {}^{12}N({}^{12}B)$	~200
NC $\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$ ($(\overline{\nu}_{e,\mu,\tau})$)	~300
$\rightarrow \gamma(15.11 \text{MeV})$	

<u>"Real-time monitoring for the next</u> <u>core-collapse supernova in JUNO",</u> <u>Journal of Cosmology and</u> Astroparticle Physics (2024)

99% of energy released in (anti-)neutrinos of <u>all flavours</u>

~3 CCSN per century in the Milky Way

Expected Event Rate (@10kpc)

<u>"Real-time monitoring for the next</u> <u>core-collapse supernova in JUNO",</u> <u>Journal of Cosmology and</u> Astroparticle Physics (2024)

<u>"Real-time monitoring for the next</u> <u>core-collapse supernova in JUNO",</u> <u>Journal of Cosmology and</u> Astroparticle Physics (2024)

Rapid declarations of transient neutrino signals

Aim to contribute to Supernova Early Warning System (SNEWS) [4]

Alert eff. vs SN distance

<u>"Real-time monitoring for the next</u> <u>core-collapse supernova in JUNO",</u> <u>Journal of Cosmology and</u> Astroparticle Physics (2024)

í

Rapid declarations of transient neutrino signals

Aim to contribute to Supernova Early Warning System (SNEWS) [4]

Alert eff. vs SN distance

Alert time vs SN distance

'Real-time monitoring for the next core-collapse supernova in JUNO", Journal of Cosmology and Astroparticle Physics (2024)

Rapid declarations of transient neutrino signals

Aim to contribute to Supernova Early Warning System (SNEWS) [4]

Alert eff. vs SN distance

Alert time vs SN distance

 $27 M_{\odot}$ CCSN:

~50% alert efficiency at 300kpc

Alert Time @ 10kpc ~10-30ms

CCSN Energy spectrum + Time evolution \rightarrow Probe mass ordering

400

Diffuse Supernova Neutrino Background

Atmospherics

<u>Neutrino physics with JUNO J.</u> Phys. G 43, 030401 (2016)

<u>"JUNO sensitivity to low energy</u> <u>atmospheric neutrino spectra" The</u> <u>European Physical Journal C volume</u> 81, Article number: 887 (2021)

Discriminate v_e and v_{μ} in LS with PMT hit patterns $\rightarrow \sim 10-25\%$ uncertainty in 5 years. Measure differences in <u>direction</u> and <u>energy</u> spectra for \overline{v}_e and \overline{v}_{μ}

 (\mathbf{i})

Atmospherics

Neutrino physics with JUNO J. Phys. G 43, 030401 (2016)

<u>"JUNO sensitivity to low energy</u> <u>atmospheric neutrino spectra" The</u> <u>European Physical Journal C volume</u> 81, Article number: 887 (2021)

Discriminate v_e and v_{μ} in LS with PMT hit patterns $\rightarrow \sim 10-25\%$ uncertainty in 5 years Measure differences in <u>direction</u> and <u>energy</u> spectra for \overline{v}_e and \overline{v}_{μ}

- → Would be first measurement of atmospheric neutrino oscillation in liquid scintillator
- → Matter effects over ~3-10GeV provide sensitivity to Neutrino Mass Ordering
- \rightarrow Complementary to the reactor NMO analysis

NMO expectation: 0.7-1.4 σ in ~6 years exposure

 (\mathbf{i})

Nucleon Decay

JUNO physics and detector, Progress in Particle and Nuclear Physics 123 (2022) 103927

Proton decay in LS: triple coincidence signal

Nucleon Decay

"JUNO Sensitivity to Invisible Decay Modes of Neutrons", arXiv:2405.17792v1 (2024)

Neutron invisible decays in ¹²C in LS $n \rightarrow 3v \text{ or } nn \rightarrow 2v$

Neutrons in ¹²C decay with triple coincidences ¹¹C* \rightarrow n +¹⁰C (BR _{n \rightarrow inv} = 3.0%) ¹¹C* \rightarrow n + γ +¹⁰C (BR _{n \rightarrow inv} = 2.8%) ¹⁰C* \rightarrow n +⁹C (BR _{nn \rightarrow inv} = 6.2%) ¹⁰C* \rightarrow n + p +⁸B (BR _{nn \rightarrow inv} = 6.0%)

Primary backgrounds:

Reactor \overline{v}_e + singles, atmospheric NC interactions

Expected Sensitivity

10 year data-taking: $\tau/B (n \rightarrow inv) 5.0 \times 10^{31} \text{ years}$ $\tau/B (nn \rightarrow inv) 1.4 \times 10^{32} \text{ years}$ (90% C.L.)

 (\mathbf{i})

The JUNO Experiment

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	Tsinghua U.	Germany	U. Tuebingen
Belgium	Universite libre de Bruxelles	China	UCAS	Italy	INFN Catania
Brazil	PUC	China	USTC	Italy	INFN di Frascati
Brazil	UEL	China	U. of South China	Italy	INFN-Ferrara
Chile	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China	Xiamen University	Italy	INFN-Perugia
China	CAGS	China	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China	NUDT	Pakistan	PINSTECH (PAEC)
China	CIAE	China	CUG-Beijing	Russia	INR Moscow
China	DGUT	China	ECUT-Nanchang City	Russia 👘 🐞	JINR
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Liverpool
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	GSI	USA	UC Irvine
China	SYSU	Germany	U. Mainz		

2024 Collaboration Meeting in Kaiping, China

74 Institutes, 17 countries > 700 collaborators

Conclusion

JUNO: 20 kT liquid scintillator detector with first-rate size and energy resolution

Expected data-taking at the end of 2024

Diverse physics program : O(10keV) – O(10GeV)

- Reactor nu
- Geo nu
- Solar nu
- Supernova

Nearby CCSN + Diffuse Neutrino Background

- Atmospheric nu
- Searches for new physics

References

[1] G. Alimonti et al., The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Methods Phys. Res., Sect. A 600, 568 (2009).

[2] A. Gando et al., Measurement of the double-β decay halflife of 136Xe with the KamLAND-Zen experiment, Phys. Rev. C 85, 045504 (2012).

[3] S. Andringa et al., Current status and future prospects of the SNO+ experiment, Adv. High Energy Phys. 2016, 6194250 (2016).

[4] S Al Kharusi et al., SNEWS 2.0: a next-generation supernova early warning system for multimessenger astronomy, New J. Phys. 23 031201 (2021).

Backup

Detector components

"Radioactivity control strategy for the JUNO detector," JHEP **11** (2021), 102

- Acrylic Vessel : 12.4 \pm 0.4cm thick, >96% transparency for LS emission spectrum
- 265 Acrylic sphere segments, each assembled, polished, cleaned, then covered with PE protective film (to prevent exposure to air, preserve <1ppt radiopurity levels prior to installation)
- Stainless steel support structure (completed June 24) Supports acrylic vessel, PMTs and electronics affixed to Assembly precision <3mm
- 590 connecting rods connects to acrylic sphere

Acrylic segment covered with film

Radiopurity Control

"Radioactivity control strategy for the JUNO detector," JHEP 11 (2021), 102

"The design and sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS", Eur. Phys. J. C 81 (2021) no.11, 973

• JUNO will undergo water filling following by liquid scintillator

LAB purification:

- LAB storage -> Filtration -> Distillation -> Mixing -> Water extraction -> Gas Stripping -> Radiopurity monitoring -> JUNO Central Detector
- Target for IBD Analysis : ~10⁻¹⁵ g/gLAB U/Th
- "Ideal" Target : ~10⁻¹⁷ g/gLAB U/Th

Radioactivity monitoring system

PMTs

- 20" and 3" PMTs : Waterproof potting + testing
- Installation underway
- 15000x 20" MCP PMTs (NNVT) | 5000x 20" Dynode Hamamatsu
- TTS (σ) : 20" NNVT = 7.0 ns | 20" Hamamatsu = 1.3 ns
 3" HZC = 1.6 ns

- ~13,000 NNVT PMTs with the best PDE used for Detector light collection
 - Rest used for outer water Cherenkov detector muon veto

