Exploring constraints on the core radius and density jumps inside Earth using atmospheric neutrino oscillations

Based on <u>arXiv:2405.04986</u>

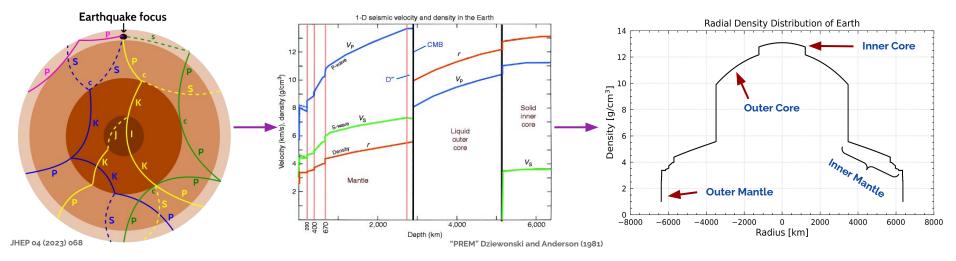
Anuj Kumar Upadhyay

(anuju@iopb.res.in)

Aligarh Muslim University, Aligarh & Institute of Physics, Bhubaneswar, India

NuFact 2024 - The 25th International Workshop on Neutrinos from Accelerators September 16 - 22, 2024

Collaborators: Anil Kumar, Sanjib Kumar Agarwalla, Amol Dighe



Outline

- Information About Earth's interior
- Atmospheric Neutrinos
- Earth's Matter Effects: Key to Probe Internal Structure of Earth
- Neutrinos for constraining the correlated density jumps and location of core-mantle boundary
 - ICAL@INO
 - Sensitivity Results

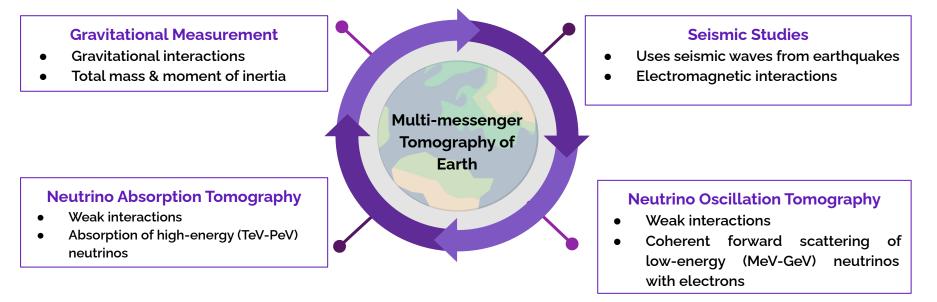
The Interior of Earth

 Information about the interior of Earth is obtained from indirect probes used in traditional seismic and gravitational studies → Preliminary Reference Earth Model (PREM)

- Broadly classified: two concentric shell the outer one is mantle, and the inner one with a much higher density is core
- Mantle consists of hot rocks of silicate and core is composed of metals like iron and nickel
- Outer core is expected be liquid (absence of S-waves and decrease in the velocity of P-waves)
- Core-Mantle Boundary (CMB): the largest compositional discontinuity within the Earth at a depth of 2891 km
- The large density contrast across the CMB

Anuj Kumar Upadhyay

Correlated Density Measurements of Earth's Layers


NuFACT - 2024

20/09/2024

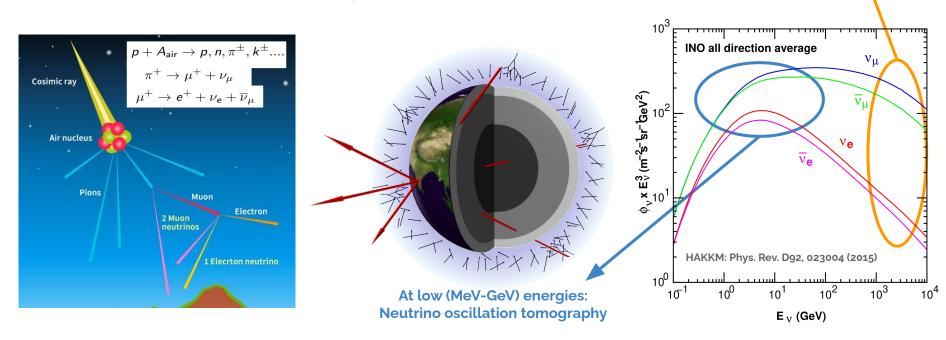
3

Multi-messenger Tomography of Earth

Neutrinos can penetrate deep inside Earth and may shed light on internal structure and composition

Geoneutrinos

- Brings crucial information about the mantle
- Radiogenic contribution to Earth's heat budget


Present study is based on neutrino oscillation tomography

Anuj Kumar Upadhyay

Atmospheric Neutrinos

At high (TeV-PeV) energies: Neutrino absorption tomography

• Atmospheric neutrinos are the ideally suited source of neutrinos to probe the internal structure of Earth

• Baseline: ~20 km to 12760 km

• Wide energy range: few MeV to more than TeV

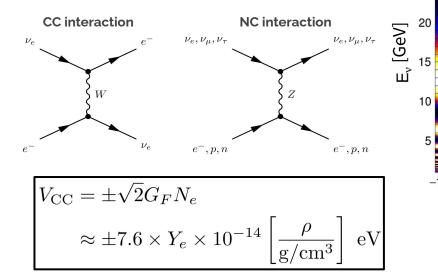
Earth's Matter Effect in Neutrino Oscillations

25

 $P(\nu_{\mu} \rightarrow \nu_{\mu})$, Vacuum, NO

Vacium oscillation valley

-0.6


-0.4

 $\cos\theta_{\rm u}$

-0.2

-0.8

 Neutrinos feel a charged-current potential
 V_{cc} during coherent forward scattering with ambient electrons inside Earth

<u>Mikheyev–Smirnov–Wolfenstein (MSW) resonance</u> (<u>L. Wolfenstein, PRD 17 (1978) 2369</u>): 6 GeV < E_u < 10 GeV <u>Neutrino oscillation length resonance (NOLR)</u> (<u>Petcov, PLB 434</u> (1998) 321)/parametric resonance resonance (PR) (<u>Akhmedov,</u> <u>NPB 538 (1999) 25</u>): 2 GeV < E_v < 6 GeV

NOLR/PR

25

15

10

-0.8

-0.6

-0.4

cos_{0.}

-0.2

MSW

E_v [GeV]

Anuj Kumar Upadhyay

Correlated Density Measurements of Earth's Layers

 $P(v_{\mu} \rightarrow v_{\mu})$, PREM profile, NO

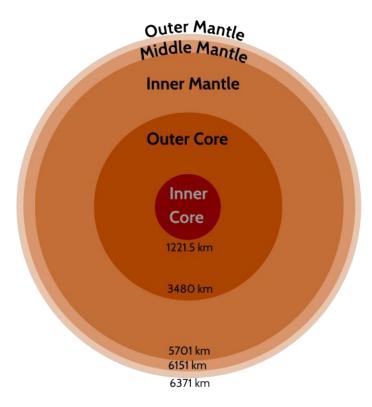
0.8

0.6

0.4

0.2

Earth's Matter Effects: key to Probe Internal Structure of Earth

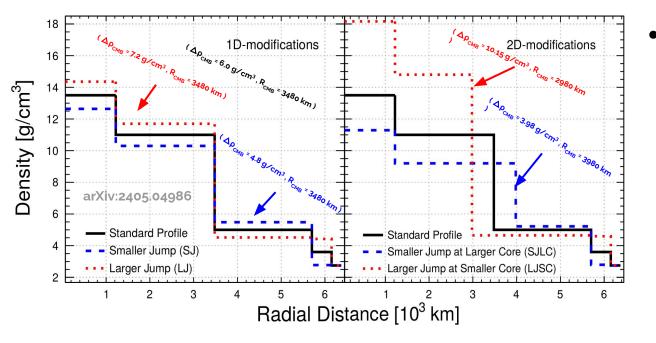

• Earth's matter effect driven neutrino oscillation measurements provide a complementary and independent information about internal structure of Earth

$$V_{\rm CC} = \pm \sqrt{2}G_F N_e \approx \pm 7.6 \times \underbrace{Y_e} \times 10^{-14} \left[\frac{\rho}{\rm g/cm^3} \right] \, \rm eV$$

p: matter density _____ Density of each layer inside Earth
 Y_e = N_e /(N_p + N_n): relative electron number density _____ Chemical composition of Earth
 Presence of Earth's core: JHEP 08 (2021) 139 (ICAL)
 Location of core-mantle boundary: PRD 104 (2021) 11, 113007 (DUNE), JHEP 04 (2023) 068 (ICAL)
 Location of core-mantle boundary: PRD 104 (2021) 11, 113007 (DUNE), JHEP 04 (2023) 068 (ICAL)
 Density distribution: Nucl.Phys.B 908 (2016) 250-267 (PINGU & ORCA), JHEP 05 (2022) 187 (DUNE), Eur.Phys.JC 82 (2022) 5, 461 (ORCA)
 Chemical composition: Sci.Rep. 5 (2015) 15225, Eur.Phys.JC 82 (2022) 7, 614 (ORCA), Front.Earth Sci. 11 (2023) 1008396

Correlated Density Measurements of Earth's Layers

Toy Density Model of Earth



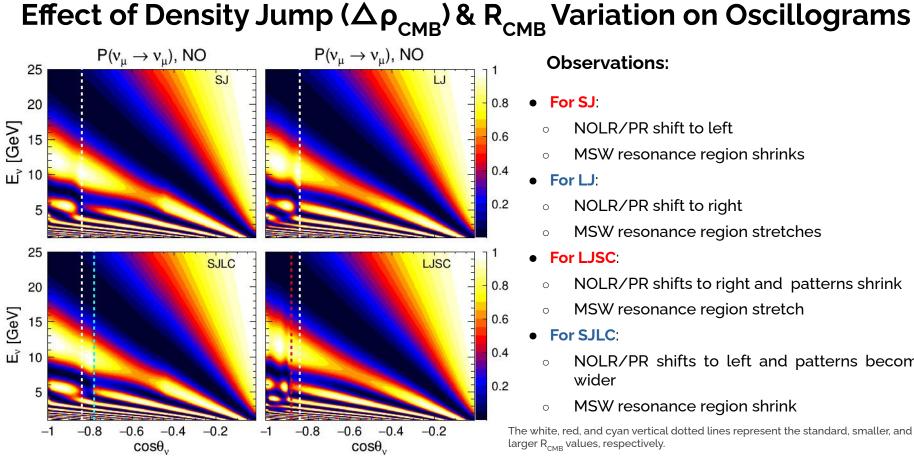
- Consider a five-layered density profile of Earth, guided by the PREM profile
- Five layers:
 - Inner Core (IC),
 - Outer Core (OC),
 - Inner Mantle (IM),
 - Middle Mantle (MM),
 - Outer Mantle (OM)

• Four significant density jumps:

- \circ IC-OC ($\Delta \rho_{\text{IC-OC}}$)
- \circ CMB ($\Delta \rho_{CMB}$)
- \circ IM-MM ($\Delta \rho_{IM-MM}$)
- \circ MM-OM ($\Delta
 ho_{MM-OM}$)

Toy Density Models of Earth with Modifying Density Jumps & $\rm R_{_{CMB}}$

- Constraints:
- Mass and Moment of inertia of Earth are fixed
- Density of outer mantle is fixed
- \circ Density ratio between inner core and outer core (ρ_{IC} / ρ_{OC}) is fixed
- $\circ \quad \mbox{Hydrodynamic condition} \\ (\rho_{\mbox{inner layer}} > \rho_{\mbox{outer layer}}) \mbox{ is satisfied}$


1D-modifications: R_{CMB} is fixed at 3480 km and only $\Delta \rho_{CMB}$ is varied **2D-modifications**: R_{CMB} is varied simultaneously with $\Delta \rho_{CMB}$

Anuj Kumar Upadhyay

Correlated Density Measurements of Earth's Layers

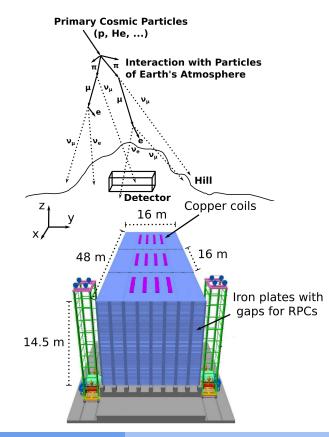
NuFACT - 2024

20/09/2024

Observations:

- For SJ
 - NOLR/PR shift to left
 - MSW resonance region shrinks 0
 - For LJ:
 - NOLR/PR shift to right 0
 - MSW resonance region stretches 0
- For LJSC:
 - NOLR/PR shifts to right and patterns shrink 0
 - MSW resonance region stretch 0
- For SJLC:
- NOLR/PR shifts to left and patterns become 0 wider
- MSW resonance region shrink 0

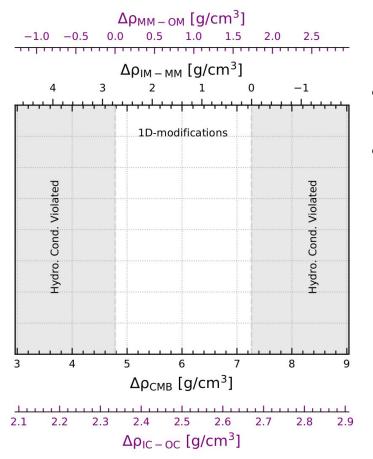
The white, red, and cyan vertical dotted lines represent the standard, smaller, and larger R_{CMB} values, respectively.

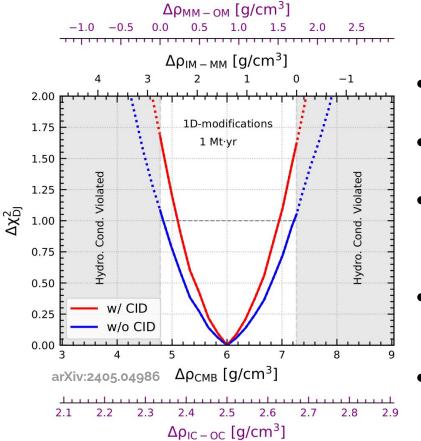

Opposite modification in MSW and NOLR/PR region for SJ and LJ, and LJSC and SJLC scenarios

NuFACT - 2024

Iron Calorimeter Detector (ICAL) at INO

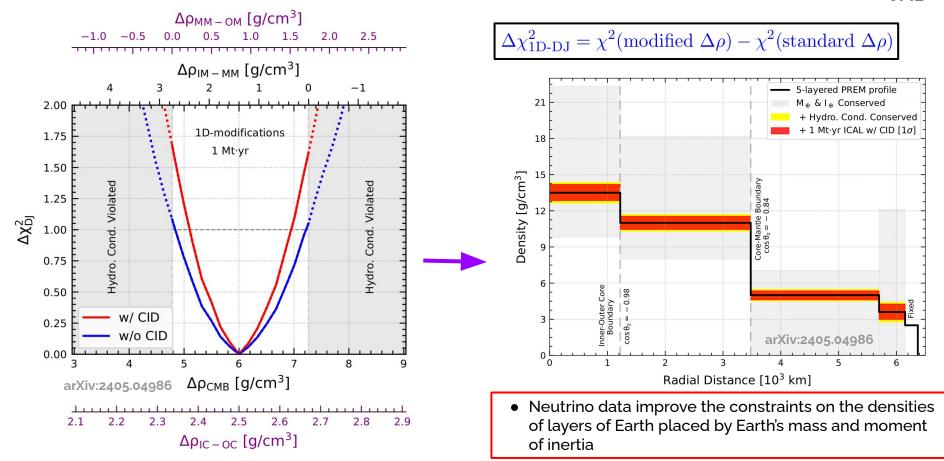
- <u>ICAL@INO</u>: 50 kton magnetized iron calorimeter detector at the proposed India-based Neutrino Observatory (INO)
- Location: Bodi West Hills, Theni District, Tamil Nadu, India
- <u>Aim</u>: To determine neutrino mass ordering and precision measurement of atmospheric neutrino oscillation parameters
- <u>Source</u>: Atmospheric neutrinos and antineutrinos in the multi-GeV range of energies over a wide range of baselines
- <u>Uniqueness</u>: Charge identification capability helps to distinguish μ^{-} and μ^{+} and hence, v_{μ} and v_{μ}^{-}
- Muon energy range: 1 25 GeV
- <u>Muon energy resolution</u>: ~ 10%
- **<u>Baselines</u>**: 15 12000 km
- Muon zenith angle resolution: ~ 1°




11

Sensitivity for Constraining Correlated Density Jumps at Standard $\rm R_{_{CMB}}$

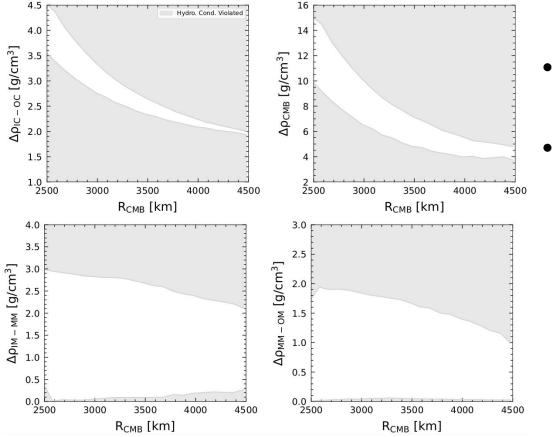
- The gray area: unphysical region where the hydrostatic equilibrium condition is violated
- White region: allowed by the gravitational measurements and hydrostatic equilibrium condition


Sensitivity for Constraining Correlated Density Jumps at Standard R_{CMB}

 $\Delta \chi^2_{1\text{D-DJ}} = \chi^2 (\text{modified } \Delta \rho) - \chi^2 (\text{standard } \Delta \rho)$

- The gray area: unphysical region where the hydrostatic equilibrium condition is violated
- White region: allowed by the gravitational measurements and hydrostatic equilibrium condition
- Added neutrino oscillation data on these external constraints
 - Further constrain the allowed region
- Neutrino data at ICAL would be able to measure $\Delta \rho_{CMB}$ as [5.1, 7.0] g/cm³ at 1 σ with a relative precision of about 15%
- In the absence of CID, the sensitivity deteriorate to [4.8, 7.2] g/cm³ at 1 σ with a relative precision of about 20%

Sensitivity for Constraining Correlated Density Jumps at Standard $\rm R_{_{CMB}}$

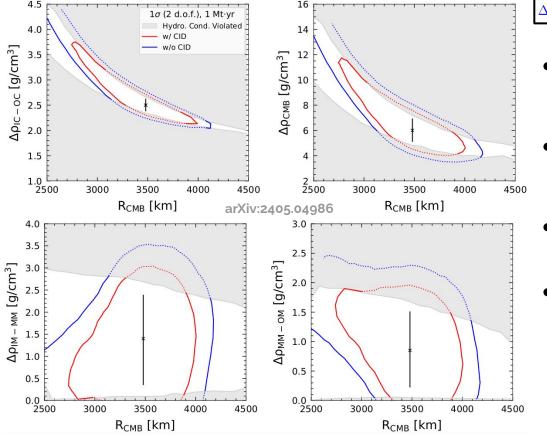


Correlated Density Measurements of Earth's Layers

NuFACT - 2024

14

Sensitivity for Constraining Correlated Density Jumps and Location of $\mathsf{R}_{\mathsf{CMB}}$



- The gray area: unphysical region where the hydrostatic equilibrium condition is violated
- White region: allowed by the gravitational measurements and hydrostatic equilibrium condition

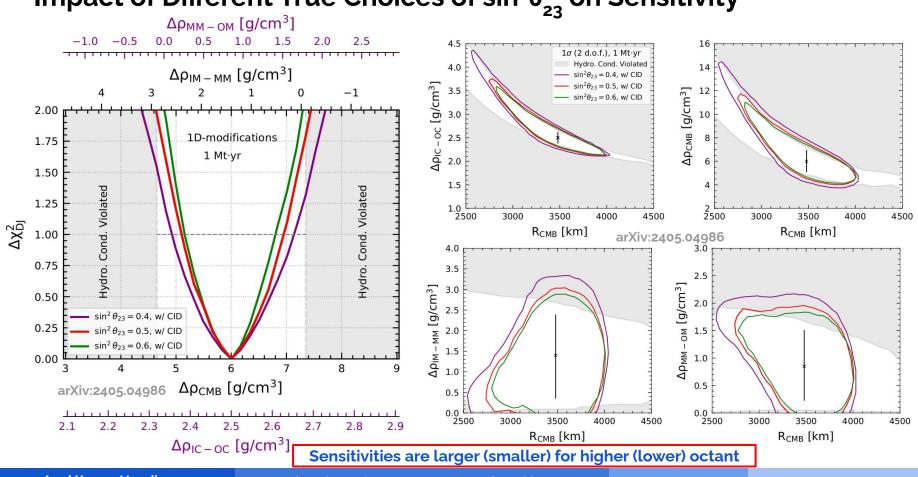
Anuj Kumar Upadhyay

NuFACT - 2024

Sensitivity for Constraining Correlated Density Jumps and Location of R_{CMB}

 $\Delta \chi^2_{\rm DJ-CMB} = \chi^2 (\text{modified } \Delta \rho \& R_{\rm CMB}) - \chi^2 (\text{standard } \Delta \rho \& R_{\rm CMB})$

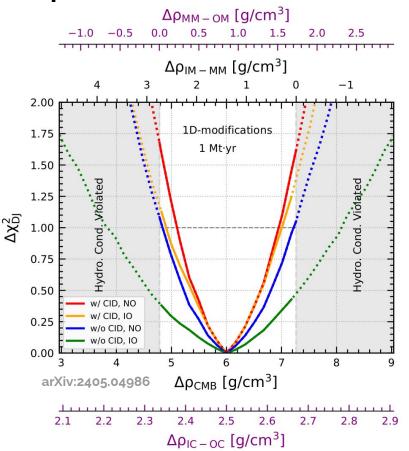
- The gray area: unphysical region where the hydrostatic equilibrium condition is violated
- White region: allowed by the gravitational measurements and hydrostatic equilibrium condition
- Neutrino oscillation data can help us to further constrain the allowed region
- An example of the complementarity to the existing measurements


Summary

- In combination with gravitational and seismic studies, neutrino oscillations and absorption based measurements would pave the way for "Multi-Messenger Tomography of Earth"
- Atmospheric neutrinos have energies in the multi-GeV range where the Earth matter effects are significant, hence they would serve as probes of the internal structure of Earth
- Neutrino data improve the constraints on the densities of Earth's layers placed by Earth's mass and moment of inertia
- ICAL detector with 1 Mt·yr exposure would be able to measure the density jump at CMB ($\Delta \rho_{CMB}$) at the standard R_{CMB} = 3480 km with a relative precision of about **15**% at the 1 σ C.L
- ICAL would be able to further constrain the allowed region by existing measurements

I acknowledge the support from the Department of Science and Technology (DST), Govt. of India (DST/INSPIRE Fellowship/2019/IF190755)

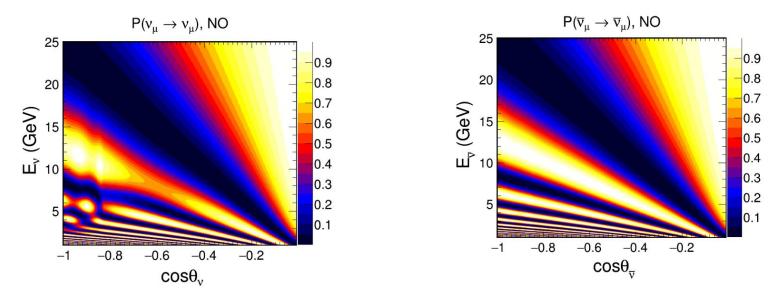
Thank you!



Impact of Different True Choices of $\sin^2\theta_{23}$ on Sensitivity

Anuj Kumar Upadhyay

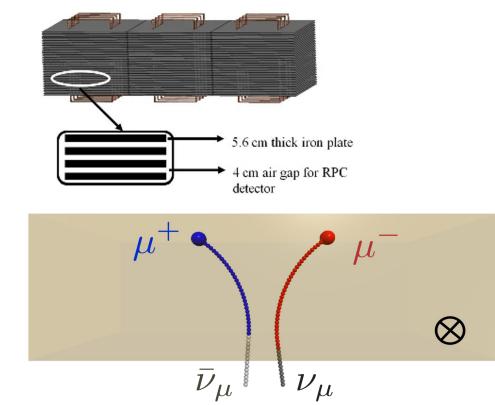
Correlated Density Measurements of Earth's Layers NuFACT - 2024 20/09/2024


19

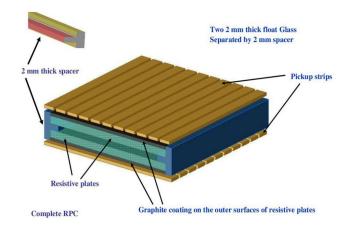
Impact of Inverted Mass Ordering on Sensitivity

- The orange (green) curve corresponds to the expected sensitivity for the IO scenario with (without) the CID capability of the ICAL detector
- Density constraints for IO are similar to NO 1σ with CID capability of ICAL
- No constraints without CID capability of ICAL

Oscillations in Neutrinos and Antineutrinos


- For NO, matter effects occur mainly in neutrino channel
- But for IO, matter effects occur mainly in antineutrino channel

It is important to detect neutrinos and antineutrinos separately to preserve the matter effects


Anuj Kumar Upadhyay

NuFACT - 2024

Design of ICAL Detector

Resistive plate chamber (RPC) (active element) sandwiched between iron plates (passive element)

- μ⁻ and μ⁺ bend in the opposite direction in the presence of magnetic field
- Therefore, neutrinos and antineutrinos can be detected separately

Pramana 88 (2017) 5, 79, arXiv:1505.07380

Statistical Analysis

In this analysis, the χ^2 statistics is expected to give median sensitivity of the experiment in the frequentist approach.

$$\chi_{-}^{2} = \min_{\xi_{l}} \sum_{i=1}^{N_{E_{\mu}^{\text{rec}}}} \sum_{j=1}^{N_{\cos\theta_{\mu}^{\text{rec}}}} \sum_{k=1}^{N_{\cos\theta_{\mu}^{\text{rec}}}} \left[2(N_{ijk}^{\text{theory}} - N_{ijk}^{\text{data}}) - 2N_{ijk}^{\text{data}} \ln\left(\frac{N_{ijk}^{\text{theory}}}{N_{ijk}^{\text{data}}}\right) \right] + \sum_{l=1}^{5} \xi_{l}^{2}$$

where,

$$N^{ ext{theory}}_{ijk} = N^0_{ijk} \left(1 + \sum_{l=1}^5 \pi^l_{ijk} \xi_l
ight)$$

Similarly, χ^2_+ is defined for μ^+

$$\chi^2_{\rm ICAL} = \chi^2_- + \chi^2_+$$

Five-layered profile

• Five layers: Inner Core (IC), Outer Core (OC), Inner Mantle (IM), Middle Mantle (MM), Outer mantle (OM)

Layers	Radius (km)	Depth (km)	Density (g/cm³)
Inner Core	0 - 1221.5	5149.5 - 6371	13.5
Outer Core	1221.5 - 3480	2891 - 5149.5	11.0
Inner Mantle	3480 - 5701	670 - 2891	5.0
Middle Mantle	5701 - 6151	220 - 670	3.6
Outer Mantle	6151 - 6371	0 - 220	2.75

- M_F (PREM) = 5.9723 x 10²⁴ kg
- MI_E (PREM) = 8.01724 x 10³⁷ kg m²
- M_F (Grav.) = 5.9722 x 10²⁴ kg
- MI_E (Grav.) = 8.01736 x 10³⁷ kg m²

The Interior of Earth

Properties	Value (±)	Units
Earth's Mass	(5.9722±0.006) x 10 ²⁴	kg
Mean moment of inertia	(8.01736±0.00097)x 10 ³⁷	kg m²
Earth's mean radius	6371.23 (0.01)	km
Core-mantle boundary	3483 ± 5	km
Inner-outer core boundary	1220 ± 10	km

- W.F. McDonough, Elsevier (2003), p. 547
- W. Chen et. al. Journal of Geodesy 89,179–188 (2015)
- B. Luzum et.al. Celestial Mechanics and Dynamical Astronomy 110, 293-304 (2011)