Independent Reaction / Spectr

Precision

Measurement

Spectrum

DUNE-PRISM : Removing neutrino interaction model dependence with a movable neutrino detector

Ciaran Hasnip On Behalf of the *DUNE Collaboration* NuFact 2024 20/09/2024

ciaran.mark.hasnip@cern.ch

1. 20/09/2024

Ciaran Hasnip

Introduction

• Entering a new era of **long-baseline (LBL) neutrino oscillation physics** where we are no longer limited by our statistics

- Not statistically limited systematically limited neutrino oscillation experiment
- Control **systematic uncertainties** with a **near detector (ND)**
- Precision Reaction Independent Spectrum Measurement (PRISM) technique reduces dependence on the neutrino interaction model

Deep Underground Neutrino Experiment

Observe $\nu_{\mu} \rightarrow \nu_{\mu}$, $\nu_{\mu} \rightarrow \nu_{e}$, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Measure δ_{CP} , Δm_{32}^2 , θ_{23} , θ_{13} , mass ordering

3. 20/09/2024

Ciaran Hasnip

Measuring Neutrino Oscillations

$$N_{osc}(E_{\nu}^{rec}) = \int dE_{\nu}^{true} \Phi(E_{\nu}^{true}) \sigma(E_{\nu}^{true}) P_{osc}(E_{\nu}^{true}) S(E_{\nu}^{true}, E_{\nu}^{reco})$$

$$Measure oscillated event rate in reconstructed energy at Far Detector$$

3 4 5 6 7 8 Reconstructed Energy (GeV)

arXiv: 2002.03005 [hep-ex]

Ciaran Hasnip

NuFact 2024

100F

0

1

2

3

Measuring Neutrino Oscillations

Ciaran Hasnip

Measuring Neutrino Oscillations

$$N_{osc}(E_{\nu}^{rec}) = \int dE_{\nu}^{true} \Phi(E_{\nu}^{true}) \sigma(E_{\nu}^{true}) P_{osc}(E_{\nu}^{true}) S(E_{\nu}^{true}, E_{\nu}^{reco})$$

Success requires accurate models of:
• Neutrino flux

- The detector
- <u>Neutrino-nucleus cross section</u>

DUNE Near Detector

- Segmented LArTPC (ND-LAr)
- System for on-Axis Near Detection (SAND)
- Temporary Muon Spectrometer (TMS)

DUNE Near Detector

- Segmented LArTPC (ND-LAr)
- System for on-Axis Near Detection (SAND)
- Temporary Muon Spectrometer (TMS)
- Precision Reaction Independent Spectrum Measurement (PRISM)

DUNE Near Detector

- Precise oscillation measurement
 - limited by systematic uncertainties
- Traditional measurement with a **fixed ND**...
 - > Measure neutrinos at high rates
 - Compare data to model prediction
 - > Reduce uncertainties in $\Phi \& \sigma$ according to $\Phi \times \sigma$ measurement

DUNE Near Detector

BUT ...

- Very different E_{ν} spectra in the Near/Far detectors due to oscillations (and detector differences)
 - > We measured $\Phi \times \sigma$ will our σ model be correct in new flux Φ_{osc} ?
- Plenty of ways to mis-model σ:
 - Unobserved neutral hadrons, final state interactions and other complex nuclear effects

What happens if the neutrino interaction model is wrong?

An example from DUVE DEEP UNDERGROUND NEUTRINO EXPERIMENT

DEEP UNDERGROUND NEUTRINO EXPERIMENT

12. 20/09/2024

Ciaran Hasnip

What Can Go Wrong?

- Possible to have a good fit at the <u>fixed</u>
 ND but E_{true} → E_{obs} model is wrong
- Test different reality where:
 - Moved 20% of proton energy to (unobserved) neutrons
 - Make (incorrect) changes to ND model to make ND model match data

Event rate from a **fixed on-axis** DUNE ND

(Dip due to gap between ND-LAr and TMS)

What Can Go Wrong?

- Possible to have a good fit at the <u>fixed</u>
 ND but E_{true} → E_{obs} model is wrong
- Case Study:
 - In the oscillated flux at the FD agreement between MC and data
 bad – but oscillation parameters are the same
 - Think our model is good alter the oscillation parameters to achieve a good fit

What Can Go Wrong?

- Possible to have a good fit at the ND but E_{true} → E_{obs} model is wrong
- A 'traditional' fixed-ND oscillation analysis could get **biased contours**
 - And we would not know it!

Precision Reaction Independent Spectrum Measurement

- The bias was not spotted because we only tested our σ model in a single flux what if we had many fluxes?
- Neutrino beam "Off-Axis Effect" (used by T2K and NOvA) neutrino flux narrows and peaks at lower energies further off-axis

17. 20/09/2024

Ciaran Hasnip

DUNE-PRISM

- DUNE near detector moves
 off axis
- Measure different neutrino fluxes
- ND-LAr is a LArTPC **liquid argon** (LAr) like DUNE far detector!
- Can we spot cross section mis-modelling with these extra fluxes?

Why PRISM?

- Look again at the model where 20% of the proton energy is carried away by neutrons
- PRISM measures different fluxes by moving off-axis – now spot the problem!

350<mark>≻10</mark>³

300

250

200

150

100

50

-6m ⇔ -10m

Model

— - Mock Data

DUNE Preliminary

Pred. Event Rate per 1 GeV

Two Approaches to Using Off-Axis Data

Model Dependent

Use off-axis data to better constrain and tune the cross-section model

Biases less likely when testing the model in many fluxes

Model Independent

Linearly combine off-axis data to produce **data-driven predictions** of the FD energy spectra

Oscillation analysis now has **minimal dependence** on the **cross-section model**

- Match the ND ν_{μ} fluxes to the FD oscillated flux
- Just solving a **linear algebra problem** with the flux
- Mathematically, this is **N***c* = *F* we solve for *c*!

N.B. we can match to **any target shape**

- Match the ND ν_{μ} fluxes to the FD oscillated flux
- Just solving a **linear algebra problem** with the flux
- Mathematically, this is **N***c* = *F* we solve for *c*!

N.B. we can match to **any target shape**

Ciaran Hasnip

NuFact 2024

 $\nu_{\mu} \rightarrow \nu_{\mu}$

IO EXPERIMENT

PRISM Fixes Oscillation Analysis

Prediction is made from ND data: Naturally includes correct neutrino interaction physics

Muon neutrino disappearance $\nu_{\mu} \rightarrow \nu_{\mu}$

Events / GeV — FD ν_μ 'Data' **Model-dependent prediction** 3000 **PRISM Prediction** Pred. Event Rate per 1 GeV $(v_{\tau} + \overline{v}_{\tau}) CC$ FD FHC 2500 $(v_e + \overline{v}_e) CC$ 1000 Model NC WS ($\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$) 800 Mock Data 2000 Flux Corr. **DUNE** Preliminary 600 1500 **DUNE** Preliminary 400 1000 200 500 2 3 0 5 E_{rec.} (GeV) 10 з 8 9 5 6 7 E_{rec.} (GeV)

26. 20/09/2024

Ciaran Hasnip

| NuFact 2024

27. 20/09/2024

Ciaran Hasnip

| NuFact 2024

DEEP UNDERGROUND

PRISM Fixes Oscillation Analysis

'Traditional' oscillation analysis

Resolve bias with a data-driven PRISM oscillation analysis

Ciaran Hasnip |

| NuFact 2024

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Conclusions

- Entering a new precision era of neutrino oscillations controlling systematic uncertainties more vital than ever!
- Challenge to constrain/tune cross-section models measuring event rates in a single broad neutrino flux
 - > PRISM technique addresses this by providing many neutrino fluxes breaks the $\Phi \times \sigma$ degeneracy!
- DUNE-PRISM is a key component of the DUNE ND design and central to its physics program
- Demonstrated great potential in reducing cross section systematic uncertainty and **limiting the risk oscillation measurement bias**

Thank you for listening!

30. 20/09/2024

Ciaran Hasnip

Backup: ND Event Rates 1-Year Run Plan

	ND-LAr				ND-GAr	
		All int.	Selected		All int.	
Stop	Run duration	$N_{ u_{\mu}CC}$	N_{Sel}	WSB	NC	$N_{ u_{\mu}CC}$
On axis (293 kA) m	14 wks.	21.6M	10.1M	0.2%	1.3%	580,000
On axis (280 kA) m	1 wk.	1.5M	690,000	0.3%	1.3%	40,000
4 m off axis m	12 dys.	2.3M	1.2M	0.3%	1.0%	61,000
8 m off axis m	12 dys.	1.3M	670,000	0.5%	0.9%	35,000
12 m off axis m	12 dys.	650,000	330,000	0.8%	0.7%	17,000
16 m off axis m	12 dys.	370,000	190,000	1.1%	0.7%	10,000
20 m off axis m	12 dys.	230,000	120,000	1.3%	0.7%	6,200
24 m off axis m	12 dys.	150,000	75,000	1.8%	0.7%	4,100
28 m off axis m	12 dys.	110,000	50,000	2.1%	0.8%	2,900
30.5 m off axis m	12 dys.	87,000	39,000	2.3%	0.7%	2,300

31. 20/09/2024

Backup: Gaussian Target

33. 20/09/2024

Ciaran Hasnip

Backup: Need Model Independent Efficiency Correction

36. 20/09/2024

Ciaran Hasnip |

NuFact 2024

DEEP UNDERGROUND NEUTRINO EXPERIMENT

