#### The Preparation Status and Plan for the Next Physics Run of the NINJA Experiment

Naoki Otani (Kyoto University) for the NINJA Collaboration



# 1. NINJA Experiment

- Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator
- Precisely measure sub~multi GeV neutrino interactions with water target using nuclear emulsion (sub µm resolution)

25

 $\rightarrow$ Aim to reduce systematic errors in 40 the neutrino oscillation experiments  $\frac{\lambda}{3}$ 35 including T2K



Difficult to detect low-momentum protons from 2p2h interactions when using the T2K near detector  $\rightarrow$ 2p2h can mimic CCQE Uncertainties of models of 2p2h interactions are very large



# 5. Scintillation Tracker

- Provide timing information to the tracks in emulsion
- Since the target mass of ECCs will be larger in the next run, a larger scintillation tracker covering about  $1.3 \text{ m} \times 1.3 \text{ m}$  is needed (The size of the tracker used in previous runs is  $1 \text{ m} \times 1 \text{ m}$ ) →Developing a newly designed scintillation tracker



| 0 |     |     |     |     |      |         | ╷╶╊╍╋╾ <sub>╋┛</sub> ╼ |  |
|---|-----|-----|-----|-----|------|---------|------------------------|--|
| 0 | 200 | 400 | 600 | 800 | 1000 | 1200    | 1400                   |  |
|   |     |     |     |     | Mome | ntum [I | MeV/c]                 |  |

- Momentum distribution of protons from 2p2h interactions
- $\rightarrow$ Source of systematic uncertainties in neutrino oscillation experiments
- We can detect low-momentum protons with a threshold of 200 MeV/c  $\rightarrow$ NINJA is the only experiment in the world capable of measuring neutrino interactions with water at such high precision!

# 2. Physics Run

- We acquired data corresponding to  $7.7 \times 10^{20}$  POT (Protons on Target) in two physics runs
- We will start 3rd physics run in the Autumn of 2025
- We will have  $> 2.3 \times 10^{20}$  POT
- The water target mass will be larger in the next run:  $75 \text{ kg} \rightarrow 130 \text{ kg}$
- ECC: Emulsion films + target
- Baby MIND: Muon range detector
- Emulsion Shifter Scintillation Tracker:

Scintillation point

Plastic scintillator including scatterer

The mechanism of position reconstruction The design of a new scintillation tracker

- Monolithic wide plastic scintillator plane
- Read out scintillation light by wavelength-shifting fibers and MPPCs (Multi-Pixel Photon Counters)
- Use light yield balance to predict the position: •
  - $\succ$  The channel near a scintillation point: Large light yield
  - $\succ$  The channel far from a scintillation point: Small light yield
- The plastic scintillator includes scatterer to localize scintillation light
- Required positional resolution is about 8 mm





Shifter

**Emulsion** 

ECC

Proton

NINJA detectors

**Scintillation** 

Tracker

**Baby MINI** 

Muon

### 3. ECC (Emulsion Cloud Chamber)





- Alternating layers of emulsion films and water targets
- Positional resolution is sub µm
- Does not have timing information and most of tracks are from cosmic rays

 $\rightarrow$ Emulsion Shifter and Scintillation Tracker provide timing information

4. Emulsion Shifter

The setup of the beam test

and  $e^+$  beam at RARiS, Tohoku Univ.

| Incident angle        | Positional resolution |
|-----------------------|-----------------------|
| $\theta = 0^{\circ}$  | 1.44 mm               |
| $\theta = 45^{\circ}$ | 1.84 mm               |

#### $\rightarrow$ The tracker can reconstruct positions with better resolution than required

We thank Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University for the allocation of beamtime

### 6. Prospects of the Physics Results





<u>The expected # of CC0 $\pi$ 2p events (left) and distribution of the opening angle of</u> <u>2 protons in CC0 $\pi$ 2p (right) in all physics runs (1.0×10<sup>21</sup> POT )</u>

- Provide timing information roughly using 2 moving walls and 1 fixed wall, on which emulsion films are mounted
- Slow moving wall moves about 1 mm every about 15 hours
- Fast moving wall moves about 1 mm every about 3 minutes
- Time resolution will be better in the next run than previous runs:

#### 4 hours $\rightarrow$ 3 minutes

Operation test will be conducted this winter



- We will observe  $\sim 750 \text{ CC} 0\pi 2p$  events out of  $\sim 5480 \text{ CC}$  events in all physics runs  $(1.0 \times 10^{21} \text{ POT})$
- 2p2h interaction tends to have a large opening angle of 2 protons ullet $\rightarrow$ The key to constraining 2p2h interaction model

#### 7. Summary

- The NINJA experiment will start 3rd physics run in the Autumn of ullet2025
- Use a newly designed scintillation tracker
- It was found from the beam test that the tracker can reconstruct positions with better resolution than required
- We aim to measure neutrino interactions and constrain interaction  $\bullet$ models

NuFact 2024@Argonne National Laboratory Sep. 16-21, 2024