

Studying Neutrino-Nucleus Interactions at SBND with ν_{μ} CC 0π Events Mun Jung Jung¹, for the SBND Collaboration

¹ University of Chicago, Chicago, IL, 60637, USA

Short-Baseline Near Detector at Fermilab

- Liquid argon time projection chamber (LArTPC) experiment and the near detector of the Short-Baseline Neutrino program [1,2]
- Will collect the world's largest νAr scattering dataset, at a rate of over 7000 neutrino events per day
- Taking data at full voltage as of July 2024

Signal Definition July 04, 2024

- $1\mu > 175$ MeV/c - 1p > 300 MeV/c, 0 other p < 200 MeV/c
- $0\pi^{\pm} > 70$ MeV/c, $0\pi^{0}$ - any neutrons, no other mesons

LArTPCs enable excellent reconstruction of complicated neutrino interaction final states using both topological and calorimetric information

 ν_{μ} CC 0π

Final state topologies are representative of interaction modes: QE is enhanced in $1p0\pi$, MEC is enhanced in $2p0\pi$

1p**0** π **Event Selection**

30 cm

Selection achieves signal purity ~84%, efficiency ~39%

Kinematic Imbalance

Imbalance in muon-proton kinematics on the

transverse plane implies background interaction modes and existence of nuclear effects

 $\delta p_T = |\vec{p}_T^{\mu} + \vec{p}_T^{p}|$

N-dimensional phase space measurements of imbalance variables allow detailed investigation of the complex $\nu - Ar$ interactions at the few-GeV energy range

References

[1] P. A. Machado, O. Palamara, and D. W. Schmitz, Ann. Rev. Nucl. Part. Sci 69 (2019). [2] R. Acciarri et al., The SBND Collaboration, JINST 15 P06033 (2020).

