Modern Neutrino Oscillation Theory

Peter B. Denton

NuFact

September 16, 2024

Neutrino oscillations add ≥ 7 new parameters:

Measure them!

Theme of this talk:

Neutrinos don't interact a lot, But everything is connected: You can't do it alone

2212.00809

2212.00809

2212.00809

2212.00809

2212.00809

2212.00809

2212.00809

2212.00809

Absolute masses

Peter B. Denton (BNL)

The Mass Ordering

There are 4+ ways of determining the mass ordering

All oscillation techniques require the matter effect

L. Wolfenstein, PRD 17 (1978)

Peter B. Denton (BNL)

The Mass Ordering: #1/4

Matter effect in appearance at NOvA/DUNE/Atmospherics

Only actually need either ν or $\bar{\nu}$; Both help for systematics

The appearance probability depends on terms like:

$$\simeq \left(\frac{\Delta m_{31}^2}{a - \Delta m_{31}^2}\right)^2 \sin^2 \left(\frac{(a - \Delta m_{31}^2)L}{4E}\right), \qquad \frac{a}{\Delta m_{31}^2} \simeq \begin{cases} 0.05 & \text{T2K/HK} \\ 0.15 & \text{NOvA} \\ 0.23 & \text{DUNE} \end{cases}$$

A. Cervera, et al. hep-ph/0002108 E. Akhmedov, et al. hep-ph/0402175 G. Barenboim, PBD, S. Parke, C. Ternes 1902.00517 NuFact: September 16, 2024

7/33

The Mass Ordering: #2/4Differentiate Δm_{31}^2 and Δm_{32}^2 at JUNO

Then if $\Delta m_{31}^2 > \Delta m_{32}^2 \Rightarrow$ Normal

The Mass Ordering: #2/4

Differentiate Δm^2_{31} and Δm^2_{32} at JUNO

JUNO is essentially^{*} in vacuum, where is the matter effect?

*Y. Li, Y. Wang, Z. Xing 1605.00900 *A. Khan, H. Nunokawa, S. Parke 1910.12900

Then if $\Delta m^2_{31} > \Delta m^2_{32} \Rightarrow$ Normal

The Mass Ordering: #3/4

Compare ν_e disappearance to ν_{μ} disappearance

The atmospheric Δm^2 measured with ν_e will be larger than that with ν_{μ} in the NO at the $\mathcal{O}(\text{few})\%$ level

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 S. Parke, R. Funchal 2404.08733 See Stephen Parke's talk after lunch

The Mass Ordering: #3/4

Compare ν_e disappearance to ν_{μ} disappearance

The atmospheric Δm^2 measured with ν_e will be larger than that with ν_{μ} in the NO at the $\mathcal{O}(\text{few})\%$ level

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 S. Parke, R. Funchal 2404.08733 See Stephen Parke's talk after lunch

I. Esteban, et al. 2007.14792

NuFact: September 16, 2024 9/33

The Mass Ordering: #4/4

The neutronization burst in a supernova

$$F_{\nu_e} = \begin{cases} F_{\nu_x}^0 & \text{NO} \\ s_{12}^2 F_{\nu_e}^0 + c_{12}^2 F_{\nu_x}^0 & \text{IO} \end{cases}$$

K. Scholberg **1707**.06384 MSW L. Wolfenstein, PRD **17** (1978) S. Mikheyev, A. Smirnov, Sov. J. Nucl. Phys. **42** (1985)

The DSNB has weak mass ordering sensitivity

A. Suliga et al. 1804.03157

NuFact: September 16, 2024 10/33

The Mass Ordering: #5/4

- Affects cosmology: $\sum m_{\nu}$
- ► Affects $0\nu\beta\beta$
- ▶ Affects end point measurements
- ► Affects $C\nu B$

PBD, J. Gehrlein 2308.09737

The Mass Ordering: #5/4

- Affects cosmology: $\sum m_{\nu}$
- Affects $0\nu\beta\beta$
- ▶ Affects end point measurements
- ► Affects $C\nu B$

Peter B. Denton (BNL)

Mass Ordering Status

- ▶ In general, prospects are good
- ▶ Care is required in interpreting significances (atmospherics)
- ▶ Many truly independent probes on the horizon
- ▶ High impact on non-oscillation neutrino experiments
- ▶ Can we test its robustness to new physics?

Mass ordering: new physics degeneracies

In the presence of new physics such as NSI we have:

$$[NO] + [\epsilon = 0] \equiv [IO] + [\epsilon_{ee} = -2]$$
$$[IO] + [\epsilon = 0] \equiv [NO] + [\epsilon_{ee} = -2]$$

Equivalences hold even if all oscillation probabilities are perfectly measured

P. Bakhti, Y. Farzan 1403.0744 P. Coloma, T. Schwetz 1604.05772 PBD, S. Parke 2106.12436 PBD, J. Gehrlein 2204.09060

This is known as the **LMA-Dark** solution

Is the mass ordering robust? Need scattering to break

Can probe same NC $\epsilon=-2$ process in scattering, but...

1. CHARM and NuTeV for $M_{Z'} \gtrsim 10 \text{ GeV}$

```
PBD, et al. 1701.04828
```

2. COHERENT-CsI for $M_{Z'} \gtrsim 50$ MeV and cosmology for $M_{Z'} \lesssim 5$ MeV

PBD, Y. Farzan, I. Shoemaker 1804.03660

3. Dresden-II for any mediator mass in ν_e sector

PBD, J. Gehrlein 2204.09060

4. Can still evade with specific flavor structures

 $\epsilon_{\mu\mu} = \epsilon_{\tau\tau} = 2$ or certain u / d combinations

5. CCM or COHERENT can close all loopholes

See Yuri Efremenko's COHERENT talk on Thursday

CP Violation

External inputs? Novel probes of CPV?

Peter B. Denton (BNL)

External Inputs to CP Violation Measurements

- ▶ DUNE and HK will have leading constraints on most parameters: $|\Delta m_{31}^2|$, MO, θ_{23} , δ , and even θ_{13}
- ▶ Solar parameters Δm_{21}^2 and θ_{12} play a role in CPV searches
- ► CPV is a fundamentally three-flavor effect
- ▶ True values of solar parameter affect CPV sensitivities
- ▶ Precision will receive $\sim 10x$ improvement with JUNO

True values matter

PBD, J. Gehrlein 2302.08513

Peter B. Denton (BNL)

2302.08513

True values matter

PBD, J. Gehrlein 2302.08513

Peter B. Denton (BNL)

2302.08513

Novel CP Violation Probes

- ▶ Two independent measurements of this is *essential*
- Accelerator $\nu_{\mu} \rightarrow \nu_{e}$ (and anti-neutrino) appearance is best
- ▶ CPV can be discovered with only ν 's (or only $\bar{\nu}$'s), but systematics
- Given the challenging systematics and the possibilities of new physics, are they enough?
- ► Are there other ways to probe CPV?

Novel CP Violation Probes

- ▶ Two independent measurements of this is *essential*
- Accelerator $\nu_{\mu} \rightarrow \nu_{e}$ (and anti-neutrino) appearance is best
- ▶ CPV can be discovered with only ν 's (or only $\bar{\nu}$'s), but systematics
- Given the challenging systematics and the possibilities of new physics, are they enough?
- Are there other ways to probe CPV?

Two other ways with appearance and one with disappearance

Other non-standard CPV probes with appearance

1. Some information in solar due to loops in elastic scattering

V. Brdar, X-J. Xu 2306.03160 K. Kelly, et al. 2407.03174 requires 3k Borexinos

2. Sub-GeV atmospherics

K. Kelly, et al. 1904.02751 Also JUNO, see also e.g. A. Suliga, J. Beacom 2306.11090

Solar (no systematics)

Atmospherics at DUNE

Peter B. Denton (BNL)

Other Non-standard CPV probes with disappearance

- ▶ Disappearance measurements are fundamentally CP conserving
- ▶ One good disappearance experiment can measure two $|U_{\alpha i}|^2$
- ▶ If four independent $|U_{\alpha i}|^2$ are measured, can extract CPV

$$J_{CP}^{2} = |U_{e2}|^{2} |U_{\mu2}|^{2} |U_{e3}|^{2} |U_{\mu3}|^{2} - \frac{1}{4} \left(1 - |U_{e2}|^{2} - |U_{\mu2}|^{2} - |U_{e3}|^{2} - |U_{\mu3}|^{2} + |U_{e2}|^{2} |U_{\mu3}|^{2} + |U_{e3}|^{2} |U_{\mu2}|^{2}\right)^{2}$$

▶ Need JUNO and DUNE/HK

Disappearance has different (better?) systematics than appearance
Good cross check!

Peter B. Denton (BNL)

2309.03262

PBD 2309.03262 NuFact: September 16, 2024 20/33

How to compute neutrino oscillation probabilities quickly?

NuFast github.com/PeterDenton/NuFast

PBD, S. Parke 2405.02400

Monte-Carlo Estimates of Statistical Significances

Wilks' theorem is often wrong

At each point in parameter space, simulate the experiment many times

"many" means $\gg 1/p$ for a desired p-value

G. Feldman, R. Cousins physics/9711021

Study found most of the time was spent computing probabilities

NOvA/T2K are $\sim 3\sigma$ experiments, but DUNE/HK will be $\gtrsim 5\sigma$ experiments!

Peter B. Denton (BNL)

The NuFast Approach

- 1. Inputs: 6 oscillation parameters, experimental details (L, E, ρ, Y_e)
- 2. Calculate λ_3 approximately
 - Iteratively improve with Newton's method, as needed
- 3. Calculate other two eigenvalues via sum rules
- 4. Calculate the $|V_{\alpha i}|^2$'s with the Eigenvector-Eigenvalue Identity
- 5. Calculate the sines of the kinematic terms
- 6. Get the T violating term with the NHS identity
- 7. Calculate key probabilities: P_{ee} , $P_{\mu\mu}$, & $P_{\mu e}$
- 8. Calculate remaining probabilities

New physics searches in oscillations

Unitarity Violation: How to Calculate

Kinematically **accessible** states

- 1. Unitary calculation of full $n \times n$ matrix
- 2. Oscillation averaged:

$$\sin^2 \frac{\Delta m_{41}^2 L}{4E} \to \frac{1}{2}$$
$$\sin \frac{\Delta m_{41}^2 L}{4E} \to 0$$

3. No matter effect:

$$H^{\mathrm{mat}} = \mathrm{diag}(V_{\mathrm{CC}} + V_{\mathrm{NC}}, V_{\mathrm{NC}}, V_{\mathrm{NC}}, 0, \dots)$$

Peter B. Denton (BNL)

Unitarity Violation: How to Calculate

Kinematically **accessible** states

Unitary calculation of full n × n matrix
Oscillation averaged:

$$\sin^2 \frac{\Delta m_{41}^2 L}{4E} \to \frac{1}{2}$$
$$\sin \frac{\Delta m_{41}^2 L}{4E} \to 0$$

3. No matter effect:

 $H^{\text{mat}} = \text{diag}(V_{\text{CC}} + V_{\text{NC}}, V_{\text{NC}}, V_{\text{NC}}, 0, \dots)$

Kinematically **inaccessible** states

- 1. Nonunitary calculation of $m \times m$ matrix m = number of kinematically accessible states
- 2. Rescale probability:

$$P_{\alpha\beta} = \frac{\left|\sum_{i=1}^{\mathrm{acc}} U_{\alpha i}^* e^{iP_i L} U_{\beta i}\right|}{\left(\sum_{i=1}^{\mathrm{acc}} U_{\alpha i}^* U_{\alpha i}\right) \left(\sum_{i=1}^{\mathrm{acc}} U_{\beta i}^* U_{\beta i}\right)}$$

- 3. Cannot subtract multiples of 1
- 4. Rescale cross section/flux as appropriate
- 5. Rescale G_F in matter effect

Unitarity Violation: a Tale of Two Regimes

*Details depends on the specific experiment/channel

Peter B. Denton (BNL)

2109.14575 & 2109.14576

NuFact: September 16, 2024 26/33

Unitarity Violation: Tau Row

Leptons: tau row is the weakest

- 1. Existing global analyses use OPERA and SNO
- 2. More data from atmospheric ν_{τ} appearance! Tau neutrino data set doubles every two years!

PBD 2109.14576

Also astrophysical ν_{τ} appearance; weak but distinct!

PBD, J. Gehrlein 2109.14575

Atmospheric works because τ is in direct region

PBD, et al. 2203.05591

Peter B. Denton (BNL)

2109.14575 & 2109.14576

NuFact: September 16, 2024 27/33

Unitarity Violation: Tau Row

Leptons: tau row is the weakest

- 1. Existing global analyses use OPERA and SNO
- 2. More data from atmospheric ν_{τ} appearance! Tau neutrino data set doubles every two years!

PBD 2109.14576

Also astrophysical ν_{τ} appearance; weak but distinct! PBD, J. Gehrlein 2109.14575

Atmospheric works because τ is in direct region

Atmospheric ν_{μ} disappearance is most constraining for UV in ν_{τ} row

PBD, et al. 2203.05591

Peter B. Denton (BNL)

2109.14575 & 2109.14576

Estimate Size of NSI Effect

Suppose two LBL experiments measure different values of δ due to NSI:

$$\epsilon_{e\beta} \approx \frac{s_{12}c_{12}c_{23}\pi\Delta m_{21}^2}{2s_{23}w_{\beta}} \left| \frac{\sin\delta_{\mathrm{T2K}} - \sin\delta_{\mathrm{NOvA}}}{a_{\mathrm{NOvA}} - a_{\mathrm{T2K}}} \right| \approx \begin{cases} 0.22 & \text{for } \beta = \mu\\ 0.24 & \text{for } \beta = \tau \end{cases}$$

 $a \propto \rho E$

$$w_{\beta} = s_{23}, c_{23} \text{ for } \beta = \mu, \tau$$

Assumed upper octant $\theta_{23} > 45^{\circ}$ for numbers

Consistency checks:

$$\blacktriangleright \sin \delta_{\rm NOvA} = \sin \delta_{\rm T2K} \Rightarrow |\epsilon| = 0$$

 \blacktriangleright sin $\delta_{NOVA} \neq \sin \delta_{T2K}$ and $a_{NOVA} = a_{T2K} \Rightarrow |\epsilon| \rightarrow \infty$

Octant:

- 1. LBL is governed by ν_3
- 2. Upper octant $\Rightarrow \nu_3$ is more ν_{μ}
- 3. More $\nu_{\mu} \Rightarrow$ need less new physics coupling to ν_{μ} to produce a given effect

PBD, J. Gehrlein, R. Pestes 2008.01110

Peter B. Denton (BNL)

NuFact: September 16, 2024 28/33

Beyond Expected Sensitivities with a Neutrino Factory

Latest P5 mentions several interesting possibilities:

"Such a [10 TeV muon collider] demonstrator might produce intense muon and neutrino beams"

"The upgraded facility would also generate bright, well-characterized neutrino beams bringing natural synergies with studies of neutrinos beyond DUNE."

"20-Year Vision: ... could entail the deployment of a low-energy muon storage ring, as exemplified by the Neutrinos from Stored Muons (nuSTORM) experiment"

See P5 Panel Discussion on Friday

Peter B. Denton (BNL)

.

NuFact: September 16, 2024 29/33

Neutrino Factory and Oscillations

Flavor Models

Upcoming oscillation measurements have the capability to confirm/reject predictions of flavor models How will the theory develop? More models? Different way of looking at predictions

Flavor Models

Upcoming oscillation measurements have the capability to confirm/reject predictions of flavor models How will the theory develop? More models? Different way of looking at predictions

Many model classes:

- Generalized CP
- Charged lepton corrections
- Modular symmetries
- Sum rules

 $c_1 e^{i\chi_1} (m_1 e^{i\alpha})^d + c_2 e^{i\chi_2} (m_2 e^{i\beta})^d + m_3^d = 0$

Texture zeros

Found that 13/15 two texture zeros are ruled out

Asked: do models predict the funnel? Sometimes!

Sometimes!

Peter B. Denton (BNL)

Flavor Models

Upcoming oscillation measurements have the capability to confirm/reject predictions of flavor models How will the theory develop?

More models?

Different way of looking at predictions

Many model classes:

- Generalized CP
- Charged lepton corrections
- Modular symmetries
- Sum rules

$$c_1 e^{i\chi_1} (m_1 e^{i\alpha})^d + c_2 e^{i\chi_2} (m_2 e^{i\beta})^d + m_3^d =$$

Texture zeros

Found that 13/15 two texture zeros are ruled out

0

Asked: do models predict the funnel? Sometimes!

Peter B. Denton (BNL)

10

PBD, J. Gehrlein 2308.09737

 $c_1 = 1, c_2 = 2, d = -\frac{1}{2}, |\chi_1| = \frac{\pi}{2}, \chi_2 = 0 \Rightarrow P_{\text{funnel}} = 0.74$

NuFact: September 16, 2024 31/33

2308.09737

Too Much Physics

Neutrino theory not covered:

- ▶ $0\nu\beta\beta$ ab inition matrix element calculations
- \blacktriangleright Neutrino nucleus cross sections $\sim {\rm GeV}$
- ▶ Neutrinos at the LHC
- ▶ High energy astrophysical neutrino searches
- ▶ Many new physics scenarios including self interactions, neutrino decay, decoherence, LIV, CPT violation, ...
- ▶ Neutrino model building

Neutrino Theory Summary

- ▶ Many ways to combine data for the mass ordering
- ▶ Some new ideas for CPV discovery
- ▶ JUNO has several key roles in CPV
- ▶ Cutting edge techniques for fast computation of probabilities
- ► A neutrino factory would push oscillation physics beyond the DUNE/HK/JUNO generation
- Many new physics scenarios to investigate; useful approximations are important!
- ▶ Can expect new information about flavor models

Backups

Peter B. Denton (BNL)

NuFact: September 16, 2024 34/33

References

SK hep-ex/9807003

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle 1405.7540

P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

I. Esteban et al. 2007.14792

NuFact: September 16, 2024 35/33

References

DESI 2404.0300 I. Esteban et al. 2007.14792 P. de Salas, et al. 2006.11237 F. Capozzi, et al. 2107.00532

Peter B. Denton (BNL)

NuFact: September 16, 2024 36/33

θ_{23} : Broader Implications

Normalcy

Is the heaviest neutrino mostly ν_{τ} ? Is the lightest neutrino least ν_{τ} ?

Quarks easily satisfy normalcy PBD 2003.04319

 $\mu\text{-}\tau$ interchange/reflection symmetry

$$\nu_{\mu} \leftrightarrow \nu_{\tau}$$
$$M_{\nu}^{*} = X M_{\nu} X^{T} \qquad X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $M_{\nu} \equiv U D_{\nu} U^{\dagger}$

Peter B. Denton (BNL)

Models predict specific correlations among the parameters

Peter B. Denton (BNL)

NuFact: September 16, 2024 38/33

CP Violation in Oscillations

In vacuum at first maximum:

$$P_{\mu e} - \bar{P}_{\mu e} \approx 8\pi J \frac{\Delta m_{21}^2}{\Delta m_{32}^2}$$
$$J \equiv s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

```
C. Jarlskog PRL 55, 1039 (1985)
```

Extracting δ from data requires every other oscillation parameter
J requires only Δm²₂₁ (up to matter effects)

Matter effects are easily accounted for

$$\hat{J} \simeq \frac{J}{\sqrt{(c_{212} - c_{13}^2 a / \Delta m_{21}^2)^2 + s_{212}^2} \sqrt{(c_{213} - a / \Delta m_{ee}^2)^2 + s_{213}^2}}$$

PBD, S. Parke 1902.07185

PBD, H. Minakata, S. Parke 1604.08167

Peter B. Denton (BNL)

NuFact: September 16, 2024 39/33

Many Interesting New Physics Scenarios in Oscillations

1. Sterile neutrinos

PBD, Y. Farzan, I. Shoemaker 1811.01310 PBD 2111.05793

2. Non-standard neutrino interactions (NSI)

with any Lorentz structure: SPVAT P. Coloma, PBD, M. Gonzalez-Garcia, M. Maltoni, T. Schwetz 1701.04828 PBD, J. Gehrlein 2008.06062, 2204.09060 PBD, A. Giarnetti, D. Meloni 2210.00109

- 3. Non-standard neutrino SELF interactions G. Barenboim, PBD, I. Oldengott 1903.02036
- 4. Neutrino decay

with visible or invisible final states

- 5. Unitarity violation
- 6. Neutrino dark matter interactions
- 7. Decoherence
- 8. Lorentz invariance or CPT violation

Peter B. Denton (BNL)

PBD, I. Tamborra 1805.05950 PBD, A. Abdullahi 2005.07200 PBD 2109.14576 PBD, J. Gehrlein 2109.14575

A. Dev, et al. 2205.06821 C. Boehm, P. Fayet, R. Schaeffer astro-ph/0012504

> T. Stuttard, M. Jensen 2007.00068 A. Gouvêa, V. Romeri, C. Ternes 2104.05806

> > S. Ge, H. Murayama 1904.02518

NuFact: September 16, 2024 40/33

Differentiating New Physics

If there is new physics in oscillations, can DUNE tell what it is?

Used the best fit points to NOvA+T2K 2020 data as benchmarks

$\Delta\chi^2$	SM	$\eta_{e\mu}$	$\eta_{e\tau}$	$\eta_{\mu au}$	$\varepsilon_{e\mu}$	$\varepsilon_{e\tau}$	$\varepsilon_{\mu au}$	3+1
$\varepsilon_{e\mu}$ NO	200	140	140	170	/	180	160	80
$\varepsilon_{e\tau}$ NO	60	48	50	45	50	/	50	40
$\varepsilon_{\mu\tau}$ NO	200	180	170	180	160	180	/	80
$\varepsilon_{e\mu}$ IO	170	80	75	90	/	10	13	3
$\varepsilon_{e\tau}$ IO	70	$\overline{50}$	$\overline{50}$	$\overline{45}$	$\overline{45}$	/	60	$\overline{20}$
$\varepsilon_{\mu\tau}$ IO	500	400	400	400	300	350	/	160

In general, DUNE will have excellent model discrimination capability!

PBD, A. Giarnetti, D. Meloni 2210.00109

Peter B. Denton (BNL)

2210.00109

NuFact: September 16, 2024 41/33

NSI Review

$$\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \sum_{\alpha,\beta,f,P} \epsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta})(\bar{f}\gamma_{\mu}f)$$

Models with large NSIs consistent with CLFV:

Y. Farzan, I. Shoemaker 1512.09147
Y. Farzan, J. Heeck 1607.07616
D. Forero and W. Huang 1608.04719
K. Babu, A. Friedland, P. Machado, I. Mocioiu 1705.01822
PBD, Y. Farzan, I. Shoemaker 1804.03660
U. Dey, N. Nath, S. Sadhukhan 1804.05808
Y. Farzan 1912.09408

Affects oscillations via new matter effect

$$H = \frac{1}{2E} \left[UM^2 U^{\dagger} + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} \right]$$

Matter potential $a \propto G_F \rho E$

B. Dev, K. Babu, PBD, P. Machado, et al. 1907.00991

Peter B. Denton (BNL)

NuFact: September 16, 2024 42/33

Cosmological Bounds

- Includes CMB temperature, polarization, and lensing, and BAO
- ▶ No local H_0 constraint
- ▶ Bounds independent of flavor
- To be consistent with data must have small mixing and small mass
- ▶ Much more than just N_{eff} and $\sum m_{\nu}$
- Just adding a new interaction is not straightforward

N. Song, M. Gonzalez-Garcia, J. Salvado 1805.08218

Shape-Shifting Sterile Neutrinos

How to evade constraints?

Suppose:

1. Sterile neutrinos talk to dark matter

DM is ultralight boson

2. Dark matter talks to baryons

Then:

- 1. Sterile neutrinos aren't abundantly produced in the early universe
- 2. Mixing angle in the Sun is suppressed
- 3. Reactor constraints still exist

H. Davoudiasl, PBD 2301.09651

PBD 2301.11106

Peter B. Denton (BNL)

2301.09651 & 2301.11106

Mass Ordering Current Status: All

Cosmology: $m_1 + m_2 + m_3 < 90$ meV at 95% CL

E. Valentino, S. Gariazzo, O. Mena 2106.15267

 \rightarrow 20 meV precision with DESI, EUCLID, . . .

From oscillations:

Normal: $m_1 + m_2 + m_3 > 60 \text{ meV}$ Inverted: $m_1 + m_2 + m_3 > 100 \text{ meV}$

See also KATRIN 2105.08533

PRIORS?

Some claim "decisive" Bayesian evidence for normal

R. Jimenez, et al. 2203.14247

More general prior assumptions \Rightarrow no significant information from cosmology

S. Gariazzo, et al. 1801.04946

S. Gariazzo, et al. 2205.02195

NuFact: September 16, 2024 45/33

Peter B. Denton (BNL)

δ : Future Sensitivities

DUNE and HK will make great measurements via appearance $\nu_{\mu} \rightarrow \nu_{e}$

 $\nu + \bar{\nu}$ helps systematics but isn't strictly necessary

PBD, J. Gehrlein 2302.08513

Need to know solar parameters to measure δ !

Current solar knowledge: okay Future (JUNO): excellent

NuFact: September 16, 2024 46/33

Peter B. Denton (BNL)

2302.08513

Solar Parameter Status

Data	$\Delta m^2_{21} \ [10^{-5} \ {\rm eV^2}]$	$\sin^2 \theta_{12}$	Ref.
SK+SNO	+6.10	0.305	SK Neutrino 2022
KamLAND	+754	0.316	1303.4667
Trainin (D	1.04	0.010	SK Neutrino 2022
SK+SNO+KamLAND	7.49	0.305	SK Neutrino 2022
	7.42	0.304	Esteban+ 2007.14792
Global fit	7.5	0.318	de Salas+ 2006.11237
	7.36	0.303	Capozzi+ 2107.00532

	$\delta x/x$						
Generation	Data	Δm_{21}^2	$\sin^2 \theta_{12}$	Ref.			
Current	SK+SNO	15%	4.6%	SK Neutrino 2022			
	KamLAND	2.5%	0.5%	1303.4667			
	KamLAND		9.070	SK Neutrino 2022			
	SK+SNO+KamLAND	$\mathbf{2.4\%}$	4.3%	SK Neutrino 2022			
		2.8%	4.3%	Esteban+ 2007.14792			
	Global fit	2.9%	5.0%	de Salas+ 2006.11237			
		2.2%	4.3%	Capozzi+ 2107.00532			
Future	DUNE-solar	5.9%	3.0%	Capozzi+ 1808.08232			
	JUNO	0.3%	0.5%	JUNO 2204.13249			

Peter B. Denton (BNL)

2302.08513

Other CP Violating NSI Constraints

NSI effects grow with energy, density, and distance Best probes:

- $\triangleright \epsilon_{\mu\tau}$: atmospheric
- ▶ $\epsilon_{e\mu}, \epsilon_{e\tau}$: LBL appearance, atmospheric
- ► IceCube
 - Constraint is at LBL best fit with 3 yrs

 $10~{\rm yrs}$ of data in the bank

- Prefers non-zero $|\epsilon_{e\mu}|$ at $\sim 1\sigma$
- ► Super-K
 - Only consider real NSI
 - ▶ Comparable sensitivity as IceCube
- ► COHERENT
 - Only applies to NSI models with $M_{Z'} \gtrsim 10 \text{ MeV}$
 - ▶ NSI u, d, e configuration matters
 - Comparable constraints

Peter B. Denton (BNL)

Super-K **1109.1889**

COHERENT 1708.01294 PBD, Y. Farzan, I. Shoemaker 1804.03660 PBD, J. Gehrlein 2008.06062

NuFact: September 16, 2024 47/33

Maximal CP violation is already ruled out:

1. $\theta_{12} \neq 45^{\circ} \text{ at} \sim 15\sigma$ 2. $\theta_{13} \neq \tan^{-1} \frac{1}{\sqrt{2}} \approx 35^{\circ} \text{ at many (100) } \sigma$ 3. $\theta_{23} = 45^{\circ} \text{ allowed at} \sim 1\sigma$ 4. $|\sin \delta| = 1 \text{ allowed}$

Peter B. Denton (BNL)

Complex Phase in Different Parameterizations

- Can relate the complex phase in one parameterization to that in another
- \blacktriangleright U_{132} and U_{213} similar to U_{123}
- δ constrained to ~ [150°, 210°] in $U_{231}, U_{312}, U_{321}$
- ▶ Bands indicate 3σ uncertainty on θ_{12} , θ_{13} , θ_{23}
- ▶ "50% of possible values of δ "
 - \Rightarrow parameterization dependent

DUNE TDR II 2002.03005

Quark Mixing

From the PDG, V_{CKM} in the V_{123} parameterization is

$$\theta_{12} = 13.09^{\circ}$$
 $\theta_{13} = 0.2068^{\circ}$ $\theta_{23} = 2.323^{\circ}$ $\delta_{\rm PDG} = 68.53^{\circ}$

Looks like "large" CPV:

 $\sin \delta_{\rm PDG} = 0.93 \sim 1$

yet $J_{\rm CKM}/J_{\rm max} = 3 \times 10^{-4}$.

Switch to V_{212} parameterization, $\Rightarrow \delta' = 1^{\circ}$ and $\sin \delta' = 0.02$.

When δ and When J?

If the goal is ${\bf CP}$ violation the Jarlskog invariant should be used $\label{eq:however} however$

If the goal is **measuring the parameters** one must use δ

Given θ_{12} , θ_{13} , θ_{23} , and J, I can't determine the sign of $\cos \delta$ which is physical e.g. $P(\nu_{\mu} \rightarrow \nu_{\mu})$ depends on $\cos \delta$ a tiny bit PBD 2309.03262

▶ T2K/HK are mostly sensitivity to $\sin \delta$; they should focus on J

T2K does this now!

NOvA/DUNE has modest $\cos \delta$ sensitivity; both J and δ should be reported Peter B. Denton (BNL) 2006.09384 NuFact: September 16, 2024 51/33

Repeated Rotations

Note that $e^{i\delta}$ must be on first or third rotation

Peter B. Denton (BNL)

2006.09384

NuFact: September 16, 2024 53/33

The Importance of $\cos \delta$

• If only $\sin \delta$ is measured \Rightarrow sign degeneracy: $\cos \delta = \pm \sqrt{1 - \sin^2 \delta}$

▶ Most flavor models predict $\cos \delta$

L. Everett, et al. 1912.10139 NuFact: September 16, 2024 54/33

Peter B. Denton (BNL)
CP Violation Discovery with Disappearance

PBD 2309.03262

Gallium Experiments

- \blacktriangleright Low energy solar neutrino experiments measure the pp flux
 - Consistent with KamLAND

SAGE 0901.2200 GALLEX 1001.2731

▶ Callibrate detectors with intense radioactive sources

• See fewer ν_e than expected:

3.0
 $\sigma :$ C. Giunti, M. Laveder 1006.3244

2.3
 $\sigma:$ J. Kostensalo, et al. 1906.10980

 $> 4\sigma$: BEST 2109.11482

Cannot be easily explained with SM physics

C. Giunti, et al. 2212.09722

V. Brdar, J. Gehrlein, J. Kopp 2303.05528

W. Haxton, et al. 2303.13623

► Prefers:
►
$$\Delta m_{41}^2 \gtrsim 0.5 \text{ eV}^2$$

► $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2) \sim 0.4$

Peter B. Denton (BNL)

NuFact: September 16, 2024 56/33

MicroBooNE is focused on ν_e appearance Can do ν_{μ} and ν_e disappearance too!

See also D. Cianci, et al. 1702.01758

MiniBooNE backgrounds too big, plus anomaly

Peter B. Denton (BNL)

2111.05793

NuFact: September 16, 2024 57/33

Results and Monte Carlo Significance

Peter B. Denton (BNL)

Global ν_e Disappearance Picture

- Gallium and my MicroBooNE regions agree
- ▶ Constraints from solar and reactor
- Cosmology disfavors entire plane

Other MicroBooNE Analysis Channels

Analysis	$\sin^2(2\theta_{14})$	$\Delta m^2_{41} \ ({\rm eV^2})$	$N\sigma$ (FC)
Wire-Cell	$0.35\substack{+0.19 \\ -0.16}$	$1.25_{-0.39}^{+0.74}$	2.4
Deep-Learning	$0.88\substack{+0.12\\-0.41}$	$3.91\substack{+0.40 \\ -0.40}$	1.8
Pandora-Np	$0.81\substack{+0.19 \\ -0.47}$	$[1.28,2.44] \\ 6.73^{+1.75}_{-0.90} \\ \vdots$	2.4
Pandora-0p	$1_{-0.29}$	$\begin{array}{c}2.21\substack{+0.82\\-0.60\\\vdots\end{array}$	1.8

Unitarity Violation: What is It?

Suppose the measurable 3×3 matrix is not unitary:

 $U_3 U_3^{\dagger} \neq \mathbb{1}$

Addition of new flavor states $\nu_a, \nu_b, \nu_c, \ldots$ and new mass states ν_4, ν_5, ν_6

$$U \to \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \cdots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \cdots \\ U_{a1} & U_{a2} & U_{a3} & U_{a4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Unitarity Violation \Rightarrow

New mass states not directly accessible by oscillations or decay Thus check if U_3 is what it should be

Peter B. Denton (BNL)

2109.14575

Unitarity Violation Status from Oscillations

 3σ maximal deviations from unitarity

Leptons

	Hu+	Ellis+
ν_e row	0.003	0.05
ν_{μ} row	0.02	0.04
ν_{τ} row	0.2	0.82
$\nu_1 \operatorname{col}$	0.06	0.22
$\nu_2 \operatorname{col}$	0.09	0.27
$\nu_3 \operatorname{col}$	0.12	0.40

Vastly different mixing angle hierarchy
\Rightarrow
Like comparing strawberries and squid

Li

\mathbf{Peter}	в.	Denton	(BNL)
------------------	----	--------	-------

$\mathbf{Q}\mathbf{u}\mathbf{a}\mathbf{r}\mathbf{k}\mathbf{s}$				
$u \operatorname{row}$	0.0015	$\sim 2.2\sigma$	tension	
c row	0.06			
$t \operatorname{row}$	-			
$d \operatorname{col}$	0.005	•		
$s \operatorname{col}$	0.06			
$b \operatorname{col}$	-			

Lepton constraints don't include anomalies Care is required

```
S. Ellis, K. Kelly, S. Li 2008.01088
               Z. Hu, et al. 2008.09730
S. Parke, M. Ross-Lonergan 1508.05095
                                  PDG
```

NuFact: September 16, 2024 62/33

Consistency of the three-flavor oscillation picture? and/or

Searches for unitarity violation?

Not the same!

Lots of models to test standard three-flavor picture: Sterile, unitarity violation, NSI, neutrino decay, decoherence, ...

Peter B. Denton (BNL)

Unitarity Constraints

Unitary violation: the study of how $U_{3\times 3}$ is not unitary independent of m_4, m_5, \ldots Constraints vary considerably in the literature:

$$1 - |U_{e1}|^2 - |U_{e2}|^2 - |U_{e3}|^2 < \begin{cases} 0.05\\ 0.001 \end{cases} \text{ at } 2\sigma$$

All analyses *assume* unitarity Throw out LSND, MiniBooNE, RAA, gallium, etc.

S. Parke, M. Ross-Lonergan 1508.05095

Z. Hu, et al. 2008.09730

Unitarity Violation

- ▶ Could conceivably differentiate: 2 new states from 1, but not 3+ from 2
- \blacktriangleright Zero distance effect \Rightarrow near detector with flux prediction

```
E.g. RAA, Gallium
```

- Numerous parameterizations: α matrix, η matrix, submatrix & Cauchy-Schwartz All apply to the inaccessible cases only
- ▶ There is an approximate correspondence to sterile and NSI

$$\alpha_{ee} \approx \frac{1}{2}(s_{14}^2 + s_{15}^2 + s_{16}^2) \approx -\epsilon_{ee}, \quad \dots$$

M. Blennow, et al. 1609.08637

Applies one experiment at a time

▶ Additional EW precision information: W, Z, π , μ , τ decays

Care is required

S. Antush, et al. hep-ph/0607020

S. Antusch, O. Fischer 1407.6607

NuFact: September 16, 2024 65/33

Peter B. Denton (BNL)

2109.14575

Unitarity Violation: Mass Ranges for Tau Neutrinos

experiment	$(4,4) \ (m_4)$	$(5,3) \ (m_4)$
atmospheric ν_{μ} disappearance	$\in [10 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40 { m MeV}$
atmospheric ν_{τ} appearance	$\in [10 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
astrophysical ν_{τ} appearance	$\lesssim 15~{ m MeV}$	$\gtrsim 40~{ m MeV}$
solar ^{8}B	$\lesssim 5~{ m MeV}$	$\gtrsim 20~{ m MeV}$
$\mathrm{DONuT}/\mathrm{FASERnu}$	$\in [100 \text{ eV}, 90 \text{ MeV}]$	$\gtrsim 200~{ m MeV}$
LBL ν_{τ} appearance (OPERA)	$\in [1 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
LBL ν_{τ} appearance (DUNE)	$\in [0.1 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
LBL ν_{μ} disappearance (DUNE)	$\in [0.1 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
CEvNS	$\in [10 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40 { m ~MeV}$

PBD, J. Gehrlein 2109.14575

Matrix Element Computation Progress

Recent years have seen real uncertainty estimates And now some ab initio results!

Unfortunately the matrix elements are somewhat smaller than previously estimated

A. Belley, et al. 2307.15156

Peter B. Denton (BNL)

NuFact: September 16, 2024 67/33