NuFact 2024

17/09/24

Overview of Neutrino Cross-Section Results

and their importance for neutrino oscillation experiments

Stephen Dolan

stephen.joseph.dolan@cern.ch

Heavily inspired by excellent talks at Neutrino 2024 from <u>M. Buizza Avanzini</u>, <u>K. McFarland</u>, <u>A. Papadopoulou</u> and <u>J. Tena Vidal</u>

Stephen Dolan

Why do we care?

Current long-baseline experiments

Current long-baseline experiments

	T2K	NOVA A
Baseline	295 km	800 km
N_{μ}^{rec} (v-mode)	318	384
N_e^{rec} (v-mode)	94	181

Current systematic uncertainties

Uncertainty on N_e^{rec}	<u>TZ</u> K	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

Large contribution to syst. uncertainties from cross-section modelling

Syst. uncertainties remains small compared to stat. uncertainties

Future long-baseline experiments

	VPER	DUNE
Baseline	arXiv:1805.04163 295 km	arXiv:2002.03005 1300 km
N_{μ}^{rec} (v-mode)	~10000	~7000
N_e^{rec} (v-mode)	~2000	~1500

Current systematic uncertainties

Uncertainty on N_e^{rec}	TZK	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

Future long-baseline experiments

	PPER	DUNE
Baseline	arXiv:1805.04163 295 km	arXiv:2002.03005 1300 km
N_{μ}^{rec} (v-mode)	~10000	~7000
N_e^{rec} (v-mode)	~2000	~1500

Current systematic uncertainties

Uncertainty on N_e^{rec}	TZK	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

Large contribution to syst. uncertainties from cross-section modelling

Current syst. uncertainties are larger than projected stat. uncertainties

Improved understanding of neutrino interactions is necessary to avoid being prematurely limitation by syst. uncertainties

High-statistics, high-resolution near detector data for in-situ constraints

Examples:

High-statistics, high-resolution near detector data for in-situ constraints

Examples:

T2K/HK ND-Upgrade

Instruments 2021, 5(4), 31

Neutron measurements

Phys. Rev. D 101, 092003 Phys. Rev. D 110, 032019 192cm

JINST 13, P02006

Stephen Dolan

NuFact 2024, Argonne, 17/09/24

- v_u CC total

··· v_u CC reco +v CC total

+V CC reco

8

Neutrino energy (GeV)

High-statistics, high-resolution near detector data for in-situ constraints

A baseline model grounded in realistic nuclear theory
Examples:

High-statistics, high-resolution near detector data for in-situ constraints

\sim A baseline model grounded in realistic nuclear theory **Examples:**

Stephen Dolan

High-statistics, high-resolution near detector data for in-situ constraints

 \sim A baseline model grounded in realistic nuclear theory

Comprehensive parametrisation of what we don't know

(i.e. a complete uncertainty model)

High-statistics, high-resolution near detector data for in-situ constraints

 $\sim\,$ A baseline model grounded in realistic nuclear theory

Comprehensive parametrisation of what we don't know

(i.e. a complete uncertainty model)

Stephen Dolan

How to confront this? High-statistics, high-resolution near detector data for in-situ constraints \sim A baseline model grounded in realistic nuclear theory Comprehensive parametrisation of what we don't know (i.e. a complete uncertainty model) Providing a means to get to these is the primary goal of cross-section measurements An anonymous oscillation-focussed experimentalist **This takes time** and iteration with theorists / model builders

• We cannot wait for DUNE and Hyper-K to turn on, we need to do this now

Stephen Dolan

What we measure

Stephen Dolan

Stephen Dolan

Stephen Dolan

Stephen Dolan

Stephen Dolan

Stephen Dolan

Stephen Dolan

Latest measurements

Since last NuFact ...

 v_e CC1 π^+ on CH WAGASCI CC0 π on CH + H₂O NC π^+ on CH

(NuINT 2024)

 $\bar{\nu}_{\mu}$ CC-INC (<u>NUINT 2024</u>) Low hadronic energy CC0 π 0p Inference of 2p2h cross section (FNAL W&C seminar)

Neutrons on Ar (arXiv:2406.10583)

NCπ⁰ (arXiv:2404.10948)

CC0 π w/correlated observables (<u>arXiv:2403.19574</u>) Joint CC0p, CCNp (<u>arXiv:2402.19281</u>)

CC0 π generalised imbalance (arXiv:2310.06082)

Low hadronic energy at ~6 GeV Multi-differential transverse imbalance at ~6 GeV Inference of v_e / v_μ ratio (NUINT 2024) Inference of SIS cross section Low hadronic energy $v_e + \bar{v}_e$ (arXiv:2312.16631) Low hadronic energy \bar{v}_μ w/neutrons (arXiv:2310.17014)

Latest measurements

Since last NuFact ...

 $v_e CC \pi$

WAGASCI CCO

 $NC\pi^+$ on CH

Neutrons on Ar (arXiv:2406.10583)

 $NC\pi^{0}$ (arXiv:2404.10948)

 $CC0\pi$ w/correlated observables (arXiv:2403.19574)

🔍 generalised imbalance (<u>arXiv:2310.06082</u>)

 $\bar{\nu}_{\mu}$ CC-INC (<u>NUINT 2024</u>) Low hadronic energy $CC0\pi0p$ Inference of 2p2h cross section (FNAL W&C seminar)

See all this land morel in wester 🗙e at ~6 GeV JT 2024) Low hadronic energy $v_e + \bar{v}_e$ (arXiv:2312.16) Low hadronic energy $\bar{\nu}_{\mu}$ w/neutrons (arXiv:2310.17014)

Stephen Dolan

How cross sections help Example

• MicroBooNE measure missing transverse momentum (δp_T) in CC0 π interactions

Stephen Dolan

How cross sections help Example

- MicroBooNE measure missing transverse momentum (δp_T) in CC0 π interactions
- They find missing strength at high δp_T

How cross sections help Example

- MicroBooNE measure missing transverse momentum (δp_T) in CC0 π interactions
- They find missing strength at high δp_T
- More FSI doesn't seem* to help enough

NuFact 2024, Argonne, 17/09/24

arXiv:2407.10962 See talk by L. Munteanu

Stephen Dolan

NuFact 2024, Argonne, 17/09/24

arXiv:2407.10962

See talk by L. Munteanu

How cross sections help

- MicroBooNE measure missing transverse momentum (δp_T) in CC0 π interactions
- They find missing strength at high δp_T
- More FSI doesn't seem to help enough, the change seems too large to be 2p2h

The measurements suggest insufficient modelling of nuclear effects motivating:

- Development of better models
- New uncertainties to cover this

But, alone, they don't tell us exactly what is wrong ...

Stephen Dolan

NuFact 2024, Argonne, 17/09/24

arXiv:2407.10962 See talk by L. Munteanu
How cross sections help

- MicroBooNE measure missing transverse momentum (δp_T) in CC0 π interactions
- They find missing strength at high δp_T
- More FSI doesn't seem to help enough, the change seems too large to be 2p2h
- Measurements from T2K don't find a disagreement in the tail
- They disfavour the changes in 2p2h and FSI needed for modest improvement of agreement with MicroBooNE

How cross sections help

- MicroBooNE measure missing transverse momentum (δp_T) in CC0 π interactions
- They find missing strength at high δp_T
- More FSI doesn't seem to help enough, the change seems too large to be 2p2h
- Measurements from T2K don't find a disagreement in the tail
- They disfavour the changes in 2p2h and FSI needed for modest improvement of agreement with MicroBooNE
 - Potential issue with A-Scaling of nuclear effects!

What else have we leant?

Some more general lessons

Stephen Dolan

All models are wrong ...

• Neutrino interaction cross sections are hard to model. Our current generator predictions are all ruled out by existing measurements.

Not all the time ...

Some models do a good job of describing lepton kinematics ...

... but definitely sometimes!

But not at very forward angles (= low energy transfer = more nuclear effects)

... but definitely sometimes!

And not simultaneously at different energies or on different targets

Stephen Dolan

Stephen Dolan

Stephen Dolan

A bright future for cross sections

T2K ND280-Upgrade: now taking data!

Stephen Dolan

A bright future for cross sections

T2K ND280-Upgrade: now taking data!

SBND: now taking data!

Stephen Dolan

A bright future for cross sections

Stephen Dolan

New detectors, new capabilities

Stephen Dolan

New detectors, new capabilities

Stephen Dolan

Neutrons are most of the energy we miss in calorimetric neutrino energy reconstruction.

Wouldn't it be great if we could measure them ...

- Detect neutrons through their secondary interactions
- Measure their position and their time of arrival: determine neutron energy!

Super-FGD position and timing resolution enables neutron energy measurements!

Phys. Rev. D **101**, 092003 Phys. Rev. D **110**, 032019

- Measurement of neutrons can allow a **kinematic separation of C and H** for antineutrino interactions on CH scintillator
 - No nuclear effects!
 - Golden sample for E_{ν} reconstruction?
 - Access to nucleon form factor physics!

- No nuclear effects!
- Golden sample for E_{ν} reconstruction?
- Access to nucleon form factor physics!
- MINERvA gave this a go!
 - No access to neutron momentum, but can use neutron direction

W

n

Plenty of interesting physics beyond hydrogen measurements Example:

- Neutrons in neutrino CC0 π •
- Multi-neutron production in anti-neutrino CC0 π –

Multi-neutron production

clean probe of

FSI and 2p2h

Neutron tagging in LAr

Stephen Dolan

New detectors, new capabilities

Stephen Dolan

Here be dragons ...

Stephen Dolan

Here be dragons ...

Stephen Dolan

Shallow inelastic scatterina $v_{\mu} + \mathbf{N} \rightarrow \mu^{-} + \mathbf{X}$ Ratio to MINERVA Tune v2 MINERvA Tune v2 Data SIS (low Q^2 DIS) is very challenging to model **GENIE 2.12.6** ENIE 3.0.6 REG hA GENIE 3.0.6 LFG hA NEUT 5.4.1 LFG GiBUU 2021 T0 NuWro 19.02 LFG Especially hadron multiplicities + energies Poor agreement with MINERvA's data Especially for heavier nuclear targets 0 Makes up ~30% of DUNE interactions D. Correia, poster 402 10^{-1} Rate /t/1.1× 10²¹ POT × ⁰ 01 $Q^2 (GeV/c)^2$ Need to ground our models with more measurements -CC-INC DUNE LBNF 40 -CC-0π -CC-1π But we expect very limited -CC-2π data on Argon before DUNE 30 CC->2π turns on! 20 Y. Chen **VuInt 202** 10 2 W (GeV)

Stephen Dolan

NuFact 2024, Argonne, 17/09/24

63

- All cross-section measurements are model dependent
 - Sometimes in the unfolding
 - Usually in the efficiency correction
 - Always in the background subtraction

- All cross-section measurements are model dependent
 - o Sometimes in the unfolding
 - Usually in the efficiency correction
 - Always in the background subtraction
- (Almost) all measurements assume uncertainties are Gaussian
 - But this is unlikely to hold for many high-statistics measurements

- All cross-section measurements are model dependent
 - Sometimes in the unfolding
 - Usually in the efficiency correction
 - Always in the background subtraction
- (Almost) all measurements assume uncertainties are Gaussian
 - But this is unlikely to hold for many high-statistics measurements

- All cross-section measurements are model dependent
 - Sometimes in the unfolding 0
 - Usually in the efficiency correction 0
 - Always in the background subtraction 0
- (Almost) all measurements assume uncertainties are Gaussian
 - But this is unlikely to hold for many high-statistics measurements
 - **Key question:** when do these shortcomings begin to 🥠 impact model benchmarking or tuning studies?

My prediction: they already are

- All cross-section measurements are model dependent
 - Sometimes in the unfolding
 - Usually in the efficiency correction
 - Always in the background subtraction
- (Almost) all measurements assume uncertainties are Gaussian
 - But this is unlikely to hold for many high-statistics measurements

My prediction: they already are

- Whilst solutions to some of the shortcomings exist, they often require major rethinking of how we do our analyses
- In the meantime, some small things can help:
 - o Report where latent model dependence may be
 - o Report how Gaussian our uncertainties are

- All cross-section measurements are model dependent
 - Sometimes in the unfolding
 - Usually in the efficiency correction
 - Always in the background subtraction
- (Almost) all measurements assume uncertainties are Gaussian
 - But this is unlikely to hold for many high-statistics measurements

My prediction: they already are

- Whilst solutions to some of the shortcomings exist, they often require major rethinking of how we do our analyses
- In the meantime, some small things can help:
 - Report where latent model dependence may be
 - Report how Gaussian our uncertainties are
- In the longer term:
 - Data preservation efforts (see MINERvA's work: <u>arXiv:2009.04548</u>)
 - Move towards more complete common-format data releases

E.g. in NUISANCE

or <u>hepdata</u>

Summary

- A detailed understanding of neutrino-nucleus interactions is crucial for current and future experiments to realise their extraordinary goals
- Cross-section measurements are an invaluable means to benchmark our models or inspire new theory developments
- The latest results have allowed us to make enormous progress understanding neutrino interaction physics over the last 10 years, but still have some way to go
- The upcoming generation of experiments (just started data collection) open the door to whole new types of measurements
- How we deal with the SIS region for DUNE and ensure the longevity of our measurements remains a challenge
- Expect plenty of **exciting new results** and a continued exponential growth of the field in the run up to DUNE & Hyper-K.

Backups

Stephen Dolan

Path to Precision Measurements

Three things we need to model (a non exhaustive list)

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors

Three things we need to model (a non exhaustive list)

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum

Three things we need to model (a non exhaustive list)

- 1. The energy dependence of neutrino cross sections
 - So we know how to extrapolate from our near to far detectors
- 2. The smearing of our neutrino energy reconstruction
 - So we can infer the shape of the oscillated spectrum
- 3. Differences in the cross section for v_e/v_μ (and v/\bar{v})
 - So we can use v_e appearance to probe CP-violation

system that's expected to be visible

Stephen Dolan

system that's expected to be visible Stephen Dolan NuFa

- Q. Is disagreement in poorly modelled regions of lepton kinematics at:
 - Low energy transfer (~QE like)?
 - High energy transfer (~non QE like)?

- Q. Is disagreement in poorly modelled regions of lepton kinematics at:
 - Low energy transfer (~QE like)?
 - High energy transfer (~non QE like)?
- MINERvA measures lepton kinematics and the sum of outgoing proton kinetic energy in CC0π interactions
 - Good proxy for energy transfer
- A. a bit of both ...

- Q. Is disagreement in poorly modelled regions of lepton kinematics at:
 - Low energy transfer (~QE like)?
 - High energy transfer (~non QE like)?
- MINERvA measures lepton kinematics and the sum of outgoing proton kinetic energy in CC0π interactions
 - Good proxy for energy transfer
- A. a bit of both ...
 - Clear overestimation of nonQE (especially at forward angles)

- Q. Is disagreement in poorly modelled regions of lepton kinematics at:
 - Low energy transfer (~QE like)?
 - High energy transfer (~non QE like)?
- MINERvA measures lepton kinematics and the sum of outgoing proton kinetic energy in CC0π interactions
 - Good proxy for energy transfer
- A. a bit of both ...
 - Clear overestimation of nonQE (especially at forward angles)
 - But also disagreement in QE region (sometimes in the opposite direction)
 - Issues with FSI modelling?

