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some COmputing Challenges in HEP

topic of extremely broad scope and
significant impact

optimize all aspects of computing -
algorithms, storage, and resource
utilization

development of algorithms with
awareness of architecture is an
important aspect

focus on some of the common
challenges faced across the field

a few unique to neutrino physics

my personal biases are in collider and
US neutrino physics
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Firehose of high-resolution data

due to increased capabilities of
detectors and accelerators
incredible amounts of data

vastly different detector designs

_and Interactions rates, but result Far Detector
IS the same Module

LAr TPC detectors produce large
data records based upon drift
time and mm resolution

LHC experiments high event rates
even with complex trigger
algorithms
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High Luminosity LHC Data Volumes

After Long Shutdown 3, LHC Run 4
luminosity will take a significant jump
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High Luminosity LHC Data Volumes

After Long Shutdown 3, LHC Run 4 = e L
luminosity will take a significant jump 8 3.5 ATLASPreliminary L
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improved triggering and compression
are essential to reducing data size

exploring data reduction through use
of RNtuple

development of data carousels -
rotating data off of tape onto disk
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https://cds.cern.ch/record/2802918?ln=en

High Luminosity LHC Data Volumes

After Long Shutdown 3, LHC Run 4
luminosity will take a significant jump

2x1034 s-1cm2—7.5x1034 s-1cm-2

Detector upgrades produce finer
granularity

Projections show that data taken in
Run 4 presents significant challenge

improved triggering and compression
are essential to reducing data size

exploring data reduction through use
of RNtuple

development of data carousels -
rotating data off of tape onto disk
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DUNE Data Volumes present different

challenge

single Far Detector module can produce 8 GB
for one drift window

significant limitations on the computing
resources available at the far site for
triggering and compression

potential physics signals extend across at
least 5 orders of magnitude in energy
scale

large calibration samples spanning the full
detector

reprocessing of DUNE raw data in out years
considerable challenge - build upon
experience of LHC data carousels

raw data this large doesn't fit nicely on a WLCG
worker node
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https://arxiv.org/abs/2210.15665

DUNE Supernova Readout

Potentially the most time critical
data from DUNE Far Detector

record data continuously for ~100
seconds

~600 TB of data from 4 Far
Detector modules

pointing for optical follow up needs
to be ~10 minutes

extremely limited computing
resources in the detector caverns

need to find creative algorithms/
resources to reconstruct events
with pointing information
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https://arxiv.org/abs/1002.1511

DUNE Supernova Readout

Potentially the most time critical
data from DUNE Far Detector

record data continuously for ~100
seconds

~600 TB of data from 4 Far
Detector modules

pointing for optical follow up needs
to be ~10 minutes

extremely limited computing
resources in the detector caverns

need to find creative algorithms/
resources to reconstruct events
with pointing information
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https://arxiv.org/pdf/2008.06647.pdf
https://arxiv.org/pdf/2008.06647.pdf

DUNE Supernova Readout

Potentially the most time critical
data from DUNE Far Detector

record data continuously for ~100
seconds

~600 TB of data from 4 Far
Detector modules

pointing for optical follow up needs
to be ~10 minutes

extremely limited computing
resources in the detector caverns

need to find creative algorithms/
resources to reconstruct events
with pointing information
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Denoising raw
waveforms in
ROls with
1D AutoEncoder

Raw waveform
ROl finding with
1DCNN

Radiological Bkg
rejection with
2DCNN

network

Dgtaprep Gaushit SP Solver DisAmbig TrajCluster PmTrack PointTreeRes Like“.hooc.j fit
(sig-proc) for direction

“Offline-like” reconstruction and pointing analysis

M. Wang (FNAL), et al., 24th IEEE Real Time Conference
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Computational Challenge preyesysm—s
of the data

 overlap of interactions increases the computation
complexity of reconstruction

» deconvolve hits
* tracking combinatorics
* vertexing

 HL-HLC expect y > 200
(currently y = 64)

 DUNE ND-LAr overlap of neutrino interactions as + 3
high as 10-20 interactions in a 10 us spill ‘ 3

« simulation of these complex events and large 5l
open detectors drives increased in S

computational resource needs

* projected compute need could be met by HPC
and Accelerators resources

* these solutions also present new challenges 8 i ‘]f
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Computational Challenge
of the data
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GPU based photon simulation

Standard Workflow Hybrid Workflow

G40pticks interfaces Geant4 user

code with Opticks i ; ) ;

Geant4 Geant4 p Figure from Simon’s presentation

Geometry GPU Context

Opticks :

Scintillation : = e .

Scintillation :
— —I I —I— TRANSLATION Analytic CSG Geometry BVH
_— G40Opticks : i

l‘ Cherenkov Ray Generation

+»{ Scintillation+Cherenkov

Optical Photons

CUD AR e 3
Thrust : Photon Buffer :
i i Nxdxdfloats :
PMT Hits PMT Hits :

Optical Photons are GPU “resident”,
only hits are copied to CPU memory

simulation of photons within open detectors can be incredibly CPU
intensive and limit event by event simulation

often solved with voxel-ized lookup tables

Opticks developed by Simon Blyth for JUNO, now part of GEANT4
releases
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CaTlsS: integrate
GEANT4+Opticks in

LArSoft for simplified
LArTPC

speedup of several 100
times for photon
simulation

also report that 1 core
could saturate the GPU



https://doi.org/10.1051/epjconf/201921402027
https://doi.org/10.1051/epjconf/202429511004
https://larsoft.org/

a cautionary tale - GPUaasS Inference
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ProtoDUNE utilized CNN to
classify reconstructed hits

as track or shower like -
EmTrkMichellD

utilize NVIDIA Triton
Inference Service to offload
via network CCN inference

distributed jobs across
FermiGrid and few OSG
sites across North America

about that second bump...
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https://doi.org/10.1007/s41781-023-00101-0
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https://doi.org/10.1007/s41781-023-00101-0
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ProtoDUNE utilized CNN to
classify reconstructed hits

as track or shower like -
EmTrkMichellD
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sites across North America

about that second bump...
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Challenge presented by HPCs and GPUs

National Laboratory



https://simpsons.fandom.com/wiki/Frinkiac_7

Challenge presented by HPCs and GPUs

L1 Cache

/ L2 Cache

L3 Cache

A / 73

X-point Persistent Memory / On-die DRAM b

Memory 4
/ SSD Cache

Spinning Disk /

/= 4

I k? Brookhaven Frinkiac 7 Aurora Figure by Graeme Séeward
National Laboratory

Spinning Disk



https://simpsons.fandom.com/wiki/Frinkiac_7
https://www.alcf.anl.gov/aurora

Challenge presented by HPCs and GPUs

multithreaded/multiprocess workflows to optimize
throughput and memory

LHC experiments have done extensive work on
MT/MP

existing large code bases present huge lift for
LArTPC experiments

scheduling many core architectures is complex

moving from CPU code to GPU code can take
signifiant restructuring of algorithm

not every task suited for GPU
optimizing for multilayer access is difficult
hardware/tools are rapidly evolving

resources are (and will continue to be) heterogenous
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L1 Cache

/ L2 Cache

L3 Cache

/ SSD Cache

Spinning Disk

Network (inc. Wide Area)

Aurora Figure by Graeme Steward
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https://www.alcf.anl.gov/aurora

High Energy Physics - Center Computing
Excellence

Started in 2020 to address challenges posed by accessing US
Leadership Class Facilities

Combined effort across 5 US National Labs
Experiments from Energy, Intensity, and Cosmic frontier
Four main thrusts of reseach

Portable parallelization strategies

HEP I/0O and HPC Storage

Event Generation

Complex Workflows

¢ Brookhaven
National Laborator y 20



High Energy Physics - Center Computing
Excellence

Started in 2020 to address challenges posed by accessing US
Leadership Class Facilities

Combined effort across 5 US National Labs
Experiments from Energy, Intensity, and Cosmic frontier
Four main thrusts of research

Portable parallelization strategies

Event Generation

Complex Workflows
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HEP-CCE Portable Parallelization

With heterogeneous architectures, the desire
for software to automatically adapt to
hardware

port existing algorithms into different portability
layers to see performance

evaluate on more than just objective metrics
(how easy it was to port)

recommended solution ended up being very
dependent on application

simple kernels all performed at a similar Charles Leggett
level

CHEP 2023

Kokkos std::par

Done
compiler bugs

Patatrack

Wirecell Done

FastCaloSim Done

P2R OpenACC

complex algorithms/multiple kernels
started to show limitations

did not eliminate the need to adapt to the
conceptual differences CPU —-GPU

¢ Brookhaven
National Laboratory 22



https://indico.jlab.org/event/459/contributions/11821/

HEP-CCE Portable Parallelization

Rasterization Runtime (averaged over 20 runs)

0.35 KoKk :I —
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With heterogeneous architectures, the desire 03 by oWiP
for software to automatically adapt to 0.25 |-
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. 0 @:;:;:;: W:;:;:;: 0%
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recommended solution ended up being very FFT Runtime (averaged over 20 runs)
dependent on application 1 e ' —
12 XXX
simple kernels all performed at a similar N s
level 5 sl
complex algorithms/multiple kernels E ol
started to show limitations L
did not eliminate the need to adapt to the 2t
conceptual differences CPU —-GPU 0 SR I
NVIDIA AMD CPU
k:»‘ Brookhaven WireCell Simulation
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https://arxiv.org/pdf/2304.01841

HEP-CCE Fine Grained I/O and Storage

Darshan I/0O monitoring libraries applied to HEP applications Data Products as
. Complex C++ Objects
track I/O activities

(In Memory)
data movement by task

access patterns and volume Translation
(Using ROOT)

analyzed ATLAS, CMS, DUNE
identified ROOT serialization bottleneck

Data structure studies
HDF5 data format as optimized for MT/MP workflows
widely used and supported at HPC facilities Write
ROQOTY7 transition to RNtuple
updated data structures and C++ libraries
capable of columnar processing
20-40% storage savings (ATLAS RNtuple)

Amit Bashal, et al.

¢ Brookhaven
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https://indico.jlab.org/event/459/contributions/11559/
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Ecological responsibility in computing

HEPScore23/Watt (NEW: Uses Quantile Power) . Top p[ot iSsacom parison of 1
different boxes running at max
frequency (except Siena and ‘

7.0

strong encouragement |
for greater utilization
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. 5.0
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https://indico.cern.ch/event/1356135/contributions/5971914/attachments/2875466/5035525/240612-GDBintro.pdf

Development of Differential Simulation

Calibration with a Differentiable Simulation

Gradient-based optimization

.
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e Challenging for conventional calibration methods

¢ Led to development of a differentiable simulation for high dimensional calibration
» Simultaneous optimization for multiple model parameters
» Straightforward application of the calibration

Differentiable simulation of a LArTPC 4

~-

Yifan Chen — SLAC, Stanford University
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slides from Yifan Chen
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https://indico.bnl.gov/event/21492/contributions/88559/attachments/53889/92170/WireCell_Summit_BNL_YifanChen_2024_04_12_diffsim.pdf

Summary

R&D is needed to improve storage beyond just bulk capacity

take advantage of new facilities (ALCF, HPC) and architectures (GPU, FPGA, ARM) to
meet computational needs

Balancing our workloads for efficiency
Impedance matching between resources and workflows
Adapting large code bases to Multithreading/Multiprocessing
try to keep pace with advancements around us and externally developed tools
landscape of “Big Data” has changed around HEP
learn to incorporate external tools into software with extremely long lifetime
shared developments serve essential role in this development (HEP Software
Foundation, HEP-CCE, WLCG, OSG, etc)
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