

Recent Results from MicroBooNE

NuFact 2024 Nitish Nayak (For the MicroBooNE Collaboration)

Sept 17th, 2024

MicroBooNE Science Goals

- Search for BSM Physics

Advance LArTPC capabilities for ulletnext generation neutrino experiments (SBN program, DUNE)

Investigate MiniBooNE Low Energy Excess (LEE)

Illuminate ν -Ar scattering physics ulletacross many topologies

MicroBooNE Science Goals

- Search for BSM Physics

ullet

Advance LArTPC capabilities for next generation neutrino experiments (SBN program, DUNE)

New Results!

Investigate MiniBooNE Low Energy Excess (LEE)

Illuminate ν -Ar scattering physics ulletacross many topologies

MicroBooNE @ NuFact 2024

Parallel Talks

- MicroBooNE's BSM Program <u>Keng Lin</u> (Monday)
- Anomalous γ and e^+e^- Searches Erin Yandel (Monday)
 - ν_{ρ} Low Energy Excess Search <u>Fan Gao</u> (Thursday)
- Inclusive and Pionless Measurements Dan Barrow (Thursday)
- Pion Production Measurements Patrick Green (Thursday)
- MeV-Scale Radon Measurements Will Foreman (Wednesday)

Posters

NC $\Delta \rightarrow 1\gamma$ - Lee Hagaman •

- $\nu_{\mu}CC$ Inclusive London <u>Cooper-Troendle</u>
- $\nu_{\mu}CC2p$ Dan Barrow
- $\nu_{\mu}CC0\pi$ Panos Englezos
- $\nu_{\mu}CC0p/Np$ Ben Bogart
- Rare Mesons <u>Jairo Rodriguez</u>
- Charged Pions Philip Detje

MeV-Scale Physics - <u>Diego Andrade</u>

Solution of the state of the

The Experiment

X wire plane waveforms

forms
_
×
<u> </u>
charge
charge
ctea
_
_
-

Neutrino Beams @ MicroBooNE

- MicroBooNE's placement enables "one detector, two beams" concept
- $\mathcal{O}(500k)$ interactions across both beams
 - BNB is on-axis
 - NuMI spans 8° (target) -> 120° (absorber) and has significantly more $\nu_e / \bar{\nu}_e$

MicroBooNE Science Goals

Enhancing our previous BSM searches

- Can shed light on the sources of this anomaly ongoing/updated analyses targeting all topologies

LEE Search (ν_{ρ} -like)

- 1st Round saw no evidence of ν_e like • excess
- Since then, updates to PRD 105 (2022) 11, 112004
 - Same topology as MiniBooNE LEE ۲ $(\nu_e CC0\pi)$
- First analysis to use full MicroBooNE dataset!
 - $6.8 \times 10^{20} \rightarrow 11.1 \times 10^{20} \text{ POT}$
- New background constraint from $\nu_{\mu}CC$ and ٠ $NC\pi^0$ rich sidebands

match hadronic final states of ν_{e} signal channel

BNB

New Results!

$= \nu_e$ Low Energy Excess Search - <u>Fan Gao</u>

LEE Search (ν_e -like)

- Previously :
 - MiniBooNE-like excess based on enhancement in true E_{ν}
- Update to include :
 - Enhancement in true E_e , $\cos \theta_e$ (shower kinematics) as well
- MiniBooNE LEE hypothesis for ν_{ρ} -like is more comprehensive

- With $\sim 65\%$ more stats and new sideband constraints => able to provide strong limits on the MiniBooNE LEE-like models
- Inconsistent with ν_e -like excess at > 99% CL!
- Consistent results across all kinematic observables

ν_{s} Oscillations 3+1

- Previously, 3+1 ν_s search based on BNB-only ν_e analysis (inclusive $\nu_e CC$)
- Able to reject some LSND allowed regions at 95% CL

BNB + NuMI

$$\nu_e \rightarrow \nu_s$$

12

However, sensitivity limited by cancellation effect of ν_{e} -appearance and ν_{e} disappearance @ BNB

3+1 ν_{s} Oscillations

- This appearance-disappearance degeneracy can be broken by using NuMI sample •
- ulletdominates relative to BNB)
- Pioneering "one detector, two beams concept" •

BNB + NuMI

Different baseline, different intrinsic ν_e contribution in flux (~4% vs 0.5% in BNB => disappearance effect

Updating the NuMI simulation

- We have overhauled our NuMI simulation
 - Beamline geometry updates
 - Updated to a modern G4 version (4.10) for a better base model
 - Constraints from NA49 and others similar to NOvA, MINERvA
 - Conservative treatment of uncertainties outside data coverage •

More details at <u>MICROBOONE-NOTE-1129-PUB</u>

NuMI sits at $\sim 8^{\circ}$ (highly off-axis!) => very little phase space coverage for external hadron production data

3+1 ν_s Oscillations

- Allows for significant increase in sensitivity ulletwhen including both beams!
- Stay tuned for upcoming results!
- More details in <u>MICROBOONE-NOTE-1132-</u> <u>PUB</u>

LEE Search (single- γ)

Inclusive single- γ

Enhancement in NC Coherent

- Previously, saw no evidence of enhancement to NC $\Delta \rightarrow 1\gamma$
 - Disfavor sole MiniBooNE explanation at 95% CL ۲
- Now, casting a wider net with new and updated analyses both generic (inclusive) and specific enhancements
- Stay tuned for results!

BNB

Enhancement in NC $\Delta \rightarrow 1\gamma$

- Anomalous γ and e^+e^- Searches - Erin Yandel - NC $\Delta \rightarrow 1\gamma$ - Lee Hagaman

MicroBooNE Science Goals

Extending our BSM program

LEE Search (BSM e^+e^-)

- Dark neutrino models
- Decay into ~collinear e^+e^- pairs via dark gauge boson, Z'
- Mimics LEE signature with single shower topology
- Single or multiple dark neutrino states

Dark Sector e+e- Simulation

Ballet, Pascoli, Ross-Lonergan PRD 99 (2019) 071701

Bertuzzo, Jana, Machado, Zukanovich Funchal PRL 121 (2018) 24, 241801

More details at: MICROBOONE-NOTE-1124-PUB

HNL/Dark Sector Searches

- Dark tridents -> light dark matter production via dark photon mediation • $\rightarrow e^+e^-$ topologies
- Higgs portal searches -> scalar Higgs produced via kaon decay @ NuMI -> di-lepton topologies
- Exploring new phase space and setting competitive limits!

NuMI

- MicroBooNE's BSM Program - Keng Lin

- HNLs relevant for neutrino mass (see-saw), Baryon asymmetry, Dark matter
- Competitive limits across broad range of HNL mass, including < 100 MeV (multiple final states)

MicroBooNE Science Goals

Looking Ahead to the Future

Neutrino Interactions

$\nu-Ar$ Datasets from MicroBooNE

CC inclusive

- 1D v_μ CC inclusive @ BNB, <u>Phys. Rev. Lett. 123, 131801</u>
- 1D v_μ CC E_ν @ BNB,
 Phys. Rev. Lett. 128, 151801
- 3D CC E_v @ BNB, <u>arXiv:2307.06413</u>
- 1D v_e CC inclusive @ NuMI, <u>Phys. Rev. D104, 052002</u> <u>Phys. Rev. D105, L051102</u>
- 2D v_μ CC0pNp inclusive @ BNB, <u>arXiv:2402.19216</u>, <u>arXiv:2402.19281</u>

Pion production

- $v_{\mu}NC\pi^{0}$ @ BNB, <u>Phys. Rev. D 107, 012004</u>
- 2D $v_{\mu}NC\pi^{0}$ @ BNB, <u>arXiv:2404.10948</u>
- $v_{\mu} CC\pi^{0} @ BNB, arXiv:2404.09949$

CC0π

- 1D v_e CCNp0π @ BNB,
 <u>Phys. Rev. D 106, L051102</u>
- 1D & 2D v_µ CC1p0π transverse imbalance @ BNB, <u>Phys. Rev. Lett. 131, 101802</u> <u>Phys. Rev. D 108, 053002</u>
- 1D & 2D v_{μ} CC1p0 π generalized imbalance @ BNB, Phys. Rev. D 109, 092007
- 1D v_{μ} CC1p0 π @ BNB, <u>Phys. Rev. Lett. 125, 201803</u>
- 1D v_µ CC2p @ BNB, <u>arXiv:2211.03734</u>
- 1D v_{μ} CCNp0 π @ BNB, <u>Phys. Rev. D102, 112013</u>
- 2D v_{μ} CCNp0 π @ BNB, <u>arXiv:2403.19574</u>

Rare channels & novel identification techniques

- η production @ BNB, <u>Phys. Rev. Lett. 132, 151801</u>
- Λ production @ NuMI, <u>Phys. Rev. Lett. 130, 231802</u>
- Neutron identification, <u>arXiv:2406.10583</u>

Measurements with Pions

 $NC\pi^0$

All single- γ analyses have NC π^0 as main background

We have dedicated cross-section measurements for this channel

Informs not just nuclear modeling uncertainties but acts as an important SM-level handle

Pion Production Measurements - Patrick Green

ullet

 \bullet

Measurements with Pions

- Measurements in the resonance (RES) regime $\Delta(1232)$
 - NC and CC π^0 released, π^{\pm} final states also being analysed
 - Detailed description over π^0 kinematics
- Also able to measure higher order resonances with η -production
 - Novel EM calibration sources, improvements to reconstruction relevant for proton decay @ DUNE

New Results!

- Pion Production Measurements Patrick Green
- Rare Mesons Jairo Rodriguez
- Charged Pions Philip Detje

$\nu_{\mu}CC$ Inclusive + Pionless

$\nu_{\mu}CC$ Inclusive + Pionless

MeV-scale physics

- Techniques to reconstruct "blips" (isolated O(MeV) energy depositions from various sources) pioneered at ArgoNeut
- Can leverage to dramatically improve thresholds at low energies
- Measurements of Rn²²² decays during calibration runs
 - Important for assessing radiopurity and radiological backgrounds
 - Important for DUNE supernova and BSM physics

PRD109 (2024) 052007

- MeV-Scale Radon Measurements - Will Foreman - MeV-Scale Physics - Diego Andrade

Novel LArTPC techniques

- Use fine-timing from PMTs and beam spill to extract ns-resolution •
 - Enables long-lived BSM particle searches, better cosmic rejection •
- Demonstrate new LArTPC reconstruction techniques for exotic topologies, deep-learning based methods for 3D reconstruction, neutrino energy estimation etc

Conclusions

•

•

Wealth of new results across its science program

- New LEE results rejecting ν_{e} -like interpretation at >99% CL! •
- New results on HNLs and Dark tridents
- Upcoming results for single- γ and e^+e^- based BSM searches
- Upcoming 3+1 sterile neutrino search with unique "one detector, two beams" analysis
- Continues to lead the community in its cross-section program with • diverse results across multiple topologies
 - Able to probe much deeper into nuclear initial state and final state modeling
- Pioneering new techniques for MeV-scale reconstruction
- Other novel techniques for LArTPCs looking forward to next generation experiments
- Stay tuned for more results!

µBooNE Run 3493 Event 41075, October 23rd, 2015 75 cm

Thank you!

Backup

ν_e LEE models and results

[model #2]

[model #1]

Results in Np / 0p channels separately and combined

LEE Search: ν_{ρ} results

3+1 parametrization

$\sin^2 2\theta_{ee}$	$=\sin^2 2\theta_{14}$
$\sin^2 2\theta_{\mu\mu}$	$= 4 \cos^2 \theta_{14} \sin^2 \theta_{24} (1 - 1)$
$\sin^2 2 heta_{\mu e}$	$=\sin^2 2\theta_{14} \sin^2 \theta_{24}$
$\sin^2 2\theta_{es}$	$=\sin^2 2\theta_{14}\cos^2\theta_{24}\cos^2\theta_{24}$
$\sin^2 2 heta_{\mu s}$	$=\cos^4\theta_{14}\sin^22\theta_{24}\cos^2\theta_{14}$

$$\begin{aligned} N_{\nu_e} &= N_{\text{intrinsic } \nu_e} \cdot P_{\nu_e \to \nu_e} + N_{\text{intrinsic } \nu_\mu} \cdot P_{\nu_\mu \to \nu_e} \\ &= N_{\text{intrinsic } \nu_e} \cdot \left[1 + (R_{\nu_\mu/\nu_e} \cdot \sin^2 \theta_{24} - 1) \cdot \sin^2 2\theta_{14} \cdot \sin^2 \Delta_{41} \right], \end{aligned}$$

$$\begin{split} &v_e = 1 - 4(1 - |U_{e4}|^2)|U_{e4}|^2 \sin^2 \Delta_{41}, \\ &v_\mu = 1 - 4(1 - |U_{\mu4}|^2)|U_{\mu4}|^2 \sin^2 \Delta_{41}, \\ &v_e = 4|U_{\mu4}|^2|U_{e4}|^2 \sin^2 \Delta_{41}. \end{split}$$

$$= 4(1 - |U_{e4}|^2)|U_{e4}|^2$$

$$= 4(1 - |U_{\mu4}|^2)|U_{\mu4}|^2$$

$$= 4|U_{\mu4}|^2|U_{e4}|^2$$

$$= 4|U_{e4}|^2|U_{s4}|^2$$

$$= 4|U_{\mu4}|^2|U_{s4}|^2$$

$$= 4|U_{\mu4}|^2|U_{s4}|^2$$

NuMI ν_{μ} data-simulation comparison

BNB and NuMI data/MC comparison side-by-side. Refers to both channels combined, with full correlation across the two channels.

MICROBOONE-NOTE-1132-PUB

Updated NuMI flux @ MicroBooNE

by BNB ν_{μ} which largely cancels out cross section and detector systematics.

3+1 sensitivities

BNB + NuMI 3+1 MicroBooNE sensitivities

Heavy Neutral Lepton Searches

produced in beam via mixing

NuMI

decay in the detector

Dark Tridents and Higgs Portal

Rare Mesons and Baryons

