# First MEG II results

# NuFact 2024 - The 25th international workshop on Neutrinos from Accelerators

September 16th - 21st, 2024, Argonne National Laboratories

Matteo De Gerone - INFN Genova

### Outline

- Why we are looking for  $\mu \rightarrow e\gamma$  decay?
- The MEG II experiment: signal, background and experimental apparatus
- First results from MEG II
- Status and prospects

### Intro: cLFV processes in muon decay

- In Standard Model even including v oscillations charged Lepton Flavor Violating rates are expected to be too small to be observed.
  - As an example,  $\mu \rightarrow e\gamma$  decay could be induced radiatively by neutrino mixing, but at a negligible level:



BF

- Observation of a such a decay would be a clear indication of New Physics. • A search motivated by many models Beyond Standard Model (SUSY, GUT...) which predict BR at measurable level (10<sup>-13</sup> / 10<sup>-14</sup>).

$$R(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \simeq 10^{-52}$$



## Why µ channel is a golden one?

- No background from SM processes.
- proton accelerators.
- µ life time allows for long beam transport.
- µ decays show simple kinematics with a clear signature (in a huge background).
  - 3 main channels:
    - μ+→e+γ
    - µ+→e+e+e-
    - $\mu$ -N→e-N conversion
- All these channels should be (and they are) investigated, because there is a strong **complementarity** among them...

Very high intensities low energy muon beam are now available at meson factories and



### $\mu \rightarrow e cLFV$ transition process: complementarity



- energy scale  $\Lambda$ .
- Contributions could come from:
  - dipole transition like term and
  - 4-fermion interaction like term.
- enhanced.

### A closer look at the current experimental status

µ cLFV decays search is a more than 70 years long quest...

All µ decays channels are subject of running (or commissioning phase) experiments. Among them, the  $\mu \rightarrow e\gamma$  search is the currently most advanced one: MEG took data in the period 2009 - 2013, while MEG II is just releasing its first results right now!

10- $10^{-2}$  $10^{-3}$  $10^{-4}$ 10<sup>-5</sup>  $10^{-6}$  $10^{-7}$  $10^{-8}$  $10^{-9}$ 10<sup>-1</sup>  $10^{-1}$  $10^{-1}$  $10^{-13}$ 10<sup>-1</sup>  $10^{-15}$ **10**<sup>-16</sup>  $10^{-1}$ 1940

upper limit

ratio

**Branching** 





## $\mu \rightarrow e\gamma$ decay: signal and background



Signal

2 bodies final state

$$E_{\gamma} = E_e = \frac{m_{\mu}}{2} = 52.8 MeV$$
$$\Delta t_{e\gamma} = 0$$
$$\theta_{e\gamma} = \phi_{e\gamma} = 180^{\circ}$$

The accidental background dominates and grows as R<sup>2</sup>.



radiative µ decay

Michel decay + γ from other processes

$$R_{rad} \simeq R_{\mu} \times BR(\mu \to e\nu\bar{\nu}\gamma)$$
$$R_{acc} \simeq R_{\mu}^2 \sigma^2(E_{\gamma})\sigma^2(\Omega_{e\gamma})\sigma(t_{e\gamma})\sigma(E_e)$$











### $\mu \rightarrow e\gamma$ decay: status before MEG II results...

- The current best upper limit on BR( $\mu \rightarrow e\gamma$ ) was set by MEG experiment with the analysis of the data collected in 2009 - 2013:
  - BR(μ→eγ) < 4.2 10<sup>-13</sup> @90% CL.
- Since 2013, an intense upgrade work was done on the main detectors, in order to gain at least 1 order of magnitude in sensitivity, down to ~ 5 10<sup>-14</sup> → MEG II
- MEG II is now running and taking physics data since 2021.



Positron track



### MEG II detector: a general view

- The MEG II experiment is placed at the Paul Scherrer Institute (PSI), where the world's most intense low energy μ DC beam (up to 5x10<sup>7</sup> μ/s) is focused and stopped on a thin plastic target inside a superconductive solenoid magnet (COBRA).
- Positron momentum is measured by a Cylindrical Drift Chamber system placed inside magnetic field, then time is reconstructed by a pixelated Timing Counter (plastic scintillator + SiPM tiles).
- γ time and momentum reconstructed in a Liquid
   Xenon Calorimeter
- Radiative muon decay counter tags high energy γ by detecting low energy e<sup>+</sup>.
- **High efficient trigger and DAQ** integrated in a single, compact system (WaveDREAM).



## MEG II detector: cylindrical drift chamber

- Single volume, stereo U-V views chamber, 7-8° stereo angle with almost squared (7 x 7 mm<sup>2</sup>) drift cells;
- He Isobutane 90:10 mixture + traces of **additives** (O<sup>2</sup>, isopropyl alcohol);
- >1700 anode wires (20  $\mu$  Au + W), >10000 cathode and guard wires (40 - 50 um Ag-plated Al wires).
- After some initial delay due to the hard technological challenges, it reached outstanding performances in run conditions since 2020.





Eur. Phys. J. C (2024) 84: 473

- 40 60 fitted hits for signal e+;
- single hit reso 120 um;
- momentum reso < 100 keV.







## MEG II detector: pixelated Timing Counter

- Two sectors made by **256 scintillating tiles** (pixels), equipped with a dual-side readout based on array of SiPM;
- positron time is obtained by combining single pixel measurements (~ 8 hit pixels for signal positrons).
- An optical fiber system distributes synchronous laser pulse to each pixel for calibration purposes (inter-timing, stability, etc).
- Stable operation since 2017. Minor deterioration due to radiation damage has been fixed with annual maintenance work and with a "refurbishment" made in 2023 (~ 100 brand new pixels were installed).



### NIM A **1046**(2023) 167751



- ~110 ps single counter reso in **MEG experimetal** conditions.
- ~35 ps reso on signal positrons



## MEG II detector: the LXe calorimeter

- Upgraded from MEG experiment:
- Higher granularity on front face: **216** PMTs have been replaced with 4092 12 x 12 mm<sup>2</sup> UV sensitive SiPM.
- Enlarged acceptance and detection efficiency;
- better pile-up rejection;
- increased resolutions on photon interaction point, timing and energy.
- Several calibration tools have been **developed** (from MEG experiment) for constant performances monitoring

/ (0.2 MeV

0.2 MeV) Eni



**@55MeV:** 2% resolution on events with w < 2 cm **1.8% resolution on** events with w > 2 cm



NIM A1046(2023) 167720)

### MEG II detector: RMD counter

- A brand new auxiliary detector not present in MEG.
- Designed to reconstruct low momentum positrons for RMD photons tagging.



- LYSO and plastic scintillator pixel read out by SiPM arrays.
- Expected improvement in sensitivity ~ 7%.



Proc. Phys. **212**(2017) 82–86)

### MEG II detector: trigger and DAQ system

- Full waveform recording @1.4 GSPS with custom designed digitizing board based on Domino Ring Sample (DRS) chip.
- Custom made **high efficient trigger** system for fast and efficient (>99%) event selection based on:
  - LXe total detected charge  $\rightarrow E_{\gamma} > 40$  MeV;
  - pTC LXe relative timing  $\rightarrow \Delta T_{e\gamma} < 11$  ns;
  - pTC LXe fast topological information almost back to back reconstruction based on look-up table.



NIM A 1045, 167542 (2023)

- ~ 9000 channels, trigger rate ~ 10 30 Hz depending on muon beam intensity.
- Online E<sub>γ</sub> reso : 2.5 %
- Online  $T_{e\gamma}$  reso < 2 ns.

### MEG II performances summary





### Photon energy

• High-granularity and uniform readout by MPPCs

• Energy resolution: 2.0%/1.8% for (conv. depth: <2cm/>2cm)

• Pielup BG reduction by 35% at 48-58 MeV ( $5 \times 10^7 \,\mu/s$ )

### Significant improvements over MEG

**Relative timing** 

 $(\leftrightarrow 122 \text{ ps}@MEG)$ 

### MEG II performances summary

| Resoluition                                              | MEG performance | MEG II achieved value                                              |
|----------------------------------------------------------|-----------------|--------------------------------------------------------------------|
|                                                          |                 | with this work                                                     |
| $E_e$ (keV)                                              | 320             | 90                                                                 |
| $\theta_e \text{ (mrad)}$                                | 9.4             | 7.2                                                                |
| $\phi_e \text{ (mrad)}$                                  | 8.7             | 4.1                                                                |
| $z_e/y_e$ (mm) core                                      | 2.4/1.2         | 2.0/0.7                                                            |
| $E_{\gamma}(\%) \ (w < 2 \text{ cm})/(w > 2 \text{ cm})$ | 2.4/1.7         | 2.0/1.8                                                            |
| $u_{\gamma}, v_{\gamma}, w_{\gamma}$ (mm)                | 5/5/6           | 2.5/2.5/5                                                          |
| $t_{e\gamma}$ (ps)                                       | 122             | 84                                                                 |
| Efficiency (%)                                           |                 |                                                                    |
| Trigger                                                  | $\approx 99$    | $\sim 80$ $\longrightarrow$ to be improved from 2022 onward (>90%) |
| Gamma-ray                                                | 63              | 62                                                                 |

| Resoluition                                              | MEG performance | MEG II achieved value                                           |
|----------------------------------------------------------|-----------------|-----------------------------------------------------------------|
|                                                          |                 | with this work                                                  |
| $E_e$ (keV)                                              | 320             | 90                                                              |
| $\theta_e \text{ (mrad)}$                                | 9.4             | 7.2                                                             |
| $\phi_e ({ m mrad})$                                     | 8.7             | 4.1                                                             |
| $z_e/y_e$ (mm) core                                      | 2.4/1.2         | 2.0/0.7                                                         |
| $E_{\gamma}(\%) \ (w < 2 \text{ cm})/(w > 2 \text{ cm})$ | 2.4/1.7         | 2.0/1.8                                                         |
| $u_{\gamma}, v_{\gamma}, w_{\gamma}$ (mm)                | 5/5/6           | 2.5/2.5/5                                                       |
| $t_{e\gamma}$ (ps)                                       | 122             | 84                                                              |
| Efficiency (%)                                           |                 |                                                                 |
| Trigger                                                  | $\approx 99$    | $\sim 80$ $\longrightarrow$ to be improved from 2022 onward (>9 |
| Gamma-ray                                                | 63              | 62                                                              |
| Positron                                                 | 30              | 67                                                              |

### Thanks to this stunning performances, with the analysis 2021 run MEG II has reached in 7 weeks of data taking 60% of the full (2009 - 2013) MEG sensitivity.

### Significant improvements over MEG



### MEG II physics data taking status

### MEG II is stably taking physics data since 2021



2024 not yet started (due to a HW fail at PSI cryo plant -> not MEG related...)

### MEG II analisys: normalization and systematics

### Normalization

- Normalization factor **k** = number of effectively measured µ
- Meaning:  $BR = N_{sig} / k$
- 2 independent methods:
  - Counting Michel positrons
    - Pre-scaled Michel positron trigger
    - Include positron efficiency and beam rate instabilities
  - Counting RMD events
    - From RMD events in energy sidebands
- Combined normalization factor (2021 run):
  - $(2.64 \pm 0.12) \times 10^{12}$ .

### **Systematics**

- Major sources for systematics:
  - Detector alignment
  - Eγ scale
  - Normalization
- Effect on sensitivity ~ 4%
  - In MEG was estimated to be ~13%

| Parameter                      | Impact on sensitivity |
|--------------------------------|-----------------------|
| $\phi_{e\gamma}$ uncertainty   | 1.1%                  |
| $E_{\gamma}$ uncertainty       | 0.9%                  |
| $\theta_{e\gamma}$ uncertainty | 0.7%                  |
| Normalization uncertainty      | 0.6%                  |
| $t_{e\gamma}$ uncertainty      | 0.1%                  |
| $E_e$ uncertainty              | 0.1%                  |
| RDC uncertainty                | < 0.1%                |

## MEG II analysis: strategy

- The μ→eγ decay is fully characterized by 5 observables: T<sub>eγ</sub>, E<sub>γ</sub>, E<sub>e</sub>, θ<sub>eγ</sub>, φ<sub>eγ</sub>.
- We perform a **blind analysis**:
  - Blind box: 48 <  $E_{\gamma}$  < 58 MeV,  $|T_{e\gamma}|$  <1ns
  - BG study in the sidebands:
    - Accidental BG in time sidebands
    - RMD in energy sideband.
- Maximum likelihood fit to extract N<sub>sig</sub>, N<sub>RMD</sub>, N<sub>acc</sub>
- Two independents analysis developed:
  - Per-events PDFs with separate angular observables  $\theta_{e\gamma}$ ,  $\phi_{e\gamma}$  (reference one).
  - Constant PDFs with single angular observable (crosscheck).



l.

2

8-0

----

## MEG II analysis: unblinding





### No excess of events over expected background around signal region

### MEG II result: 2021 data analysis





### MEG II status and prospect

- MEG dataset.
- BR(μ→eγ) < 7.5 10<sup>-13</sup> @90% CL
- branching ratio of  $\mu \rightarrow e\gamma$ :
- BR( $\mu \rightarrow ev$ ) < 3.1 10<sup>-13</sup> @90% CL



### • The first 7-week data in 2021 achieved a sensitivity of ~60% of the full

### Combining MEG + MEG II results we obtain the most stringent limit on the



### MEG II status and prospect

- 2022 and 2023 data analysis is on-going.
- A x10 data sample already acquired → we expect to explore the 10<sup>-14</sup> sensitivity region!
- 2024 run expected to be already started but delayed for some (PSI) technical issues.
- Physics run will continue until PSI accelerator will be shut down for a major upgrade in 2027, to reach a sensitivity of 6 x 10<sup>-14</sup>
- New results are coming soon, stay tuned!



### Thanks for your attention!



### MEG II Collaboration



### Back up slides

### $\mu \rightarrow$ eee decay: signal and background



Event reconstruction:

- µ invariant mass
- $\sum p_i = 0$
- vertexing
- time coincidence

Correlated background ~  $(R_{\mu})$ Accidental background ~  $(R_{\mu})^2$ 



As in MEG, the accidental background dominates and grows as R<sup>2</sup>.





## $\mu \rightarrow e$ conversion: signal and background



Neutrino-less conversion of a  $\mu$ - into an e- in the field of a nucleus. Signal: single monoenergetic e-, Ee ~ Eµ - Bµ - Erec ~ 105 MeV Only one particle in final state: no accidental background.

### **Background:**

- Intrinsic:
  - µ decay in orbit
- Beam related background:
  - Radiative  $\pi$  capture + contaminations





## µ decay: current experiments

All main muon LFV decay channels are currently subject of dedicated high resolution experiments, in different advance phases:

- $\mu^+ \rightarrow e^+\gamma$ : MEG II is taking data since 2021 and is publishing its first results
  - Today's topic!
- $\mu^+ \rightarrow e^+e^+e^-$ : Mu3e collaboration is developing detector @PSI.
- e-N conversion
  - COMET @J-PARC and Mu2e @FermiLab are close to the end of development phase.









### Beam considerations

In coincidence based experiments like  $\mu \rightarrow e\gamma$  and  $\mu \rightarrow eee$ , the accidental background is is proportional to  $R_{\mu}^2$  and it is the dominant one.

- $\Rightarrow$  a continuous beam is the proper choice.
- $\Rightarrow$  most intense DC  $\mu$  beam is available at Paul Scherrer Institute

Conversely, in µ-e conversion experiments there is only one particle in the final state. Accidental BG is not an issue and instantaneous beam rate can be pushed  $\Rightarrow$  pulsed beam can be used. (J-PARC, FNAL)

Nevertheless, beam related BG could be an issue. Proper beam handling is needed.

⇒ more complicated beam transport line to reduce background.

Search for signal at delayed time.







### Other "exotic" searches: X17 boson

- In 2016 the ATOMKI experiment reported an excess in the angular distribution of e+e- pairs in an inelastic interaction of protons on a Li target. This excess can be interpreted as due to the production of a 17 MeV boson (X17), mediator of an hypotethical fifth force. • In MEG II we can search for X17 by using: Dedicated runs with reduced magnetic field • CDCH + pTC detectors for e<sup>+</sup>e<sup>-</sup> reconstruction, using an extended tracking code to search for two opposite
- - charge particles;
- CW accelerator proton beam on a dedicated target;
- LXe calorimeter for photon tagging
- Analisys of first dedicated DAQ will be released soon! 30



### Other "exotic" searches: axion like particles

- Search for  $\mu \rightarrow ea\gamma$  (a = axion like particle).
- 3 bodies decay  $\rightarrow$  needs a completely different analysis and DAQ strategy w.r.t.  $\mu \rightarrow e\gamma$ :
  - search for a peak in invariant mass distribution;
  - much lower energy cut ~ 10MeV;
  - release back to back  $e+\gamma$  topology;
  - reduce beam intensity (down to  $10^6 \,\mu/s$ )
- Main background is given by RMD...



m<sub>a</sub> [MeV]