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Motivation
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Muons as compared to protons

» Are leptons & use all energy in a collision

* Need less collision energy for same physics
Muons as compared electrons

* Muons emit little synchrotron radiation

» Acceleration in rings possible to many TeV

A Muon Collider (MuC) can serve as
energy reach and precision machine
at the same time

In a MuC, luminosity to power ratio
Improves substantially with energy
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Global effort

« 2011-2016: Muon Accelerator Program has developed key
concepts, designs and technologies for a MuC up to 6 TeV.

e Strong surge of interest in MuC within the theoretical and
experimental communities. Shift of emphasis towards 10 TeV.

* In 2021, the International Muon Collaboration (IMCC) was formed

« IMCC goal is to develop a baseline design of a 10 TeV MuC and build the
associated R&D program for such machine. CERN is host for now.

« Studies suggest that readiness of construction can achieved in the 2040s

* In 2023, the P5 panel recommended that the US should develop a
collider with 10 TeV parton collision energies, such a MuC

* “In particular, a MuC presents an attractive option both for technological
innovation and for bringing energy frontier colliders back to the US”

* “The US should participate in the IMCC and take a leading role in defining a
reference design”
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Machine overview

 Goalistogetto 10 TeV center-of-mass energy

« Two approaches: Staging in energy (3 TeV to 10 TeV) or in

luminosity
—_
H— p —» ™ —
Proton Low-energy
driver acceleration

ut preparation line
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Challenges

H— p — e — ut

Proton
driver

e _ pt preparation line

Intense proton driver,

High-gradient SRF
cavities for acceleration

-I

Low-energy
acceleration

high-power target, cooling

IMCC & US Snowmass studied challenges:
— No fundamental showstoppers identified

— BUT engineering challenges exist

— Significant R&D is needed!
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Challenging magnets
in many places

High-energy
acceleration

Dense
neutrino flux
needs to be
mitigated

Beam induced background
In the detectors
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Proton driver

Buncher

MC Proton Driver

Optimum: 2-4 MW at 5-20 GeV,
compressed at 1-3 ns @ 5-10 Hz

SC Linac

-
______

Accumulator Combiner

Multi-MW proton sources exist globally (ex. PIP-Il, SNS, ESS)

 R&D is needed to adapt and extend such facilities to MuC requirements

Involves beam manipulations that require experimental demonstrations

* These can be studied at existing facilities that are analogs to a MuC proton driver

IOTA proton injector and ring |

IOTA at FNAL

SNS at ORNL

Spallation Neutron Source

Proposed FAST/IOTA Bunch Rotation Experiment

LiquidHg
Target

1300 MeV after Upgrade
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Target and capture

protons > pions » Muons

7

figure 1: Current Muon Collider target 3D concept.

gure 2 schematically details the bodies, dimensions and
srials of the current proposal.

In 2007, a proof-of principle test validated the concept with a liquid
Hg target. Technology was OK but some safety concerns (ref)

Recent work shows promising results with graphite or tungsten but
still significant R&D is needed to confirm that

« Puts MuC targets in synergistic path with ongoing and proposed experiments

2% Fermilab
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https://accelconf.web.cern.ch/e08/papers/wepp169.pdf

MuC targetry roadmap

 MuC targets are included in the proposed GARD High Power
Targetry Roadmap (ref) with a plan to have a prototype late 2030s

DESIGN

 FEA simulations
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PHYSICS

* Evaluate physics

erformance
P 2% Fermilab

R&D
should start now!
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https://indico.fnal.gov/event/59663/contributions/268903/attachments/168026/224907/HPT%20RD%20-%20FP-%20open%20session.pdf

lonization cooling

radio-frequency cavity

absorber

~
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x1000 cells!
Not identical

-

one cell (~ 1m)

 Solenoids that start at 2 T and extend to 20+ T at the end

« 32 T has been achieved in a SC solenoid with bore like that needed for cooling

* NC cavities (<1 GHz) that can sustain high-gradients in multi-T fields
« This has been demonstrated with a 805 MHz @ 3 T; tests at higher fields need

9 9/18/2024 NuFact 2024

2% Fermilab




Muon cooling proof-of-principle experiment

« Muon lonization Cooling Experiment (MICE) at Rutherford Appleton
Lab (UK) demonstrated ionization cooling for the first time!

« A sample lattice was build and showed O(10%) transverse cooling

absorber

[P

nature

Explore our content v Journal information v Publish withus v

nature > articles > article

Article pen Access | Published: 05 February 2020
Demonstration of cooling by the Muon Ionization

Cooling Experiment
‘The MICE collaboration
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Longitudinal emittance (mm rad)

lonization cooling design

6D emittance needs be cooled by 6-orders of magnitude

— Concepts & designs in place to achieve this goal

Further improvements are needed so that:

— (1) take into account engineering aspects (2) improve performance with latest

technology advances

MuC cooling requirement
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Late cell ( “hard”) — 14 T peak
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Muon cooling demonstrator roadmap

« Next step Is to study integration by building ionization cooling cells
that resemble a realistic channel

« Parameters are aspirational and may change based on available resources

RF studies in B-fields

+

% cavity I Material studies & cryogenic Cu
. ~
E coil - 600-800 MHz NC cavity, with coils
making 10-14 T on axis
_ — Cell integration studies
D | B =1 | = Cell resembles late 6D cooling
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Muon Collider: TeV Acceleration

High Energy Orbit Injection Energy, GeV 173 450 1725 3560
ed =2 od Extraction Energy, GeV 450 1725 3560 5000
~uad i Dipo SIE Circumference (m) 6280 10500 16500 16500
Low Energy Orbit Ramped Dipole Length (m) 5233 7448 10670 8383
____________________________________ Fixed Dipole Length (m) 1897 3689 5972
. Turns 46 106 160 180
e Max ramped dipole field (T) 1.8 1.8 1.8 1.8
Max fixed dipole field (T) 12 15 15
Ramp rate (T/s) 970 440 363

« TeV acceleration with Rapid Cycling Synchrotrons (RCS)

» Conceptual designs in place for up to 5+5 TeV

» Designs include a combination of fixed field SC magnets (12-15 T) with fast

ramping magnets (up to 1000 T/s)

« First HTS prototype achieved 300 T/s and plans underway to reach 1000 T/s

- Developing an efficient power management for these pulsed magnets is

a key aspect and more R&D is needed
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Muon Collider: Collider ring

Energy density per bunch crossing (mJ/cm3)
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* Designs in place for 3 TeV MuC with specs within the HL-LHC range

« 10 TeV more challenging since it requires a smaller f (5— 1.5 mm)

— Requires significant developments in HTS magnet space (IR Quads @ 15-20 T
and 12-16 T dipoles with large aperture (~150 mm) for shielding
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Neutrino radiation

Muons decay (say in
some straight section)

h

/ /Lﬁ
R

Collider
ring

Neutrino radiation cone
(rotating with muon beam)

Radiation due to neutrino beam reaching the earth

Narrow radiation cone for a short piece of the machine
Strong increase of maximum dose with muon energy
Matter in front does not help but makes the situation worse
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Neutrino flux mitigation system

Solution: A mechanical system that will disperse the neutrino flux by periodically

deforming the collider ring arcs vertically with remote movers;

~2 x 600 m

Legal limit: 1 mSv/year
MAP goal: <0.1 mSv/year
IMCC goal: <10 pSv/year
LHC : <5 uSvl/year
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Need to study mover system,
magnet, connections
and impact on beam

450-231-8

Working on different
approaches for experimental
insertion

-~

Requires significant R&D and proof-of principle tests
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14th International Particle Accelerator Conference, Venezia
ISSN: 2673-5490

Vertical slope
modulation ~ 1
mrad

JACOW Publishing
doi doi/jacow-ipac2023-mopl166/index. htmi

NEUTRINO GENERATED RADIATION
FROM A HIGH ENERGY MUON COLLIDER

C. Carli, C. Ahdida, D. Calzolari, G. Lacerda, G. Lerner, A. Lechner, D. Schulte,
K. Skoufaris, Y. Robert, CERN, Geneva, Switzerland
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Muon Collider in the US

« Fermilab Accelerator Complex Evolution plan opens a path towards
supporting new muon facilities

« A design for a 10 TeV MuC in the Fermilab site has been developed

« Assumes a booster replacement and extension of the PIP-II linac to 8 GeV

Energy 8 GeV

Pulse Intensity 320el2

Number of Bunches 4

Pulse Rate 10 Hz

Beam Power 4 MW

Bunch Length (AR) 20-40 ns

Bunch Length (CR) 1-3ns

Ring Circumferences 300-500 m

95% Norm. Emittance 120-216 # mm mrad
Laslett Space-Charge limit || 0.2-0.6

Summerlakes:+
Park«Sa< |

TNEEA

Accumulator
Ring

Al
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Demonstrator possibilities in the US

« Designed to provide beam for the Muon g-2 and Mu2e experiments
« Capable to deliver 8 kW beam at 8 GeV to the Mu2e production target
* Available tunnel space to run the demonstrator without interfering with Mu2e

* Production target is similar to the MuC target

muz2e
Production Solenoid

& SN —

Production Target

Excellent opportunity to
examine targets under 5T
field

3¢ Fermilab
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US Muon Collider timeline

Year: O
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Physics

Simulation and Computing Infrastructure Simulation and Computing Infrastructure

« By 2030, achieve enough technical maturity for the construction of the
muon cooling demo facility in 2030s and potential construction of the
collider facility in the 2040s.
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US R&D accelerator roadmap (~5 year plan)

Design

Integrated design of all MuC subsystems
Physics processes (space-charge, beam loading, radiation, HOM)

Proton Driver

Study needed beam manipulations at existing facilities (SNS, IOTA)
Define additions to Fermilab accel. complex to support MuC

NSNS NS NN N

r B
Targets « Extend R&D program for high-power targetry & irradiated materials
« Synergistic with Fermilab ACE-MIRT and SNS
N J
( h « Design and modeling studies of late stage cooling solenoids
Magnets « Design and prototyping of demonstrator solenoids
L ) » Design & prototyping of fast-ramping magnets & power supply
( h  R&D on high-gradient NC cavity designs
RF Cauvities « Design and prototype cavities for the demonstrator
L ) « Conceptual designs of SRF for accelerator lattices
f ™
D trat » Conceptual design of a demonstrator for cooling technology
SnelnEEiols « Site exploration (CERN, Fermilab) & begin Phase-I of testing
\ J
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Muon Collider Meetings at Fermilab

« US Muon Collider Community Meeting August 7-9t", 2024 at

Fermilab: nttps://indico.fnal.gov/e/usmc2024 el
US Muon Collider

Meeting

Fermilab, August 7-9, 2024 indico.fnal.gov/e/usmc2024

~300 registrants!

International Muon Collider Collaboration: Demonstrator Workshop

October 30, 2024 to November 1, 2024

Fermilab - Wilson Hall Link: https://indico.fnal.gov/event/64984/ :

US/Central timezone

2% Fermilab
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https://indico.fnal.gov/e/usmc2024
https://indico.fnal.gov/event/64984/

Next steps

« Muon Collider community plans to self-organize towards the
formation of a US Muon Collider organization
« The goals will be

* Facilitate collaborative work, communication and coordination across involved
US institutions

* Preparation and planning for deliverables for the Collider Panels (~ 5 years)
and the next P5 (~10 years)

« Conduct work related to studies of domestic sittings

» Build next generation experts
« Assume all members are part of the IMCC too

« Help with preparation for the next European Strategy Update

2% Fermilab
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Summary

23

Realization of a Muon Collider requires significant R&D and a
demonstrator/ prototyping program stretching over the next 2 decades

Many opportunities to contribute to cutting-edge R&D: for university
and national labs, student and professors, scientist and engineers

Strong P5 support opens the door for a broader US engagement

Currently in the US, limited funds are accessible via laboratory
discretionary funds, university research programs and theory efforts

« Expect funding to appear as we progress through the 3-year budget cycle at DOE

Stay in touch

« Join our mailing list here

2% Fermilab
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https://listserv.fnal.gov/scripts/wa.exe?SUBED1=usmcc-info&A=1

Extra
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