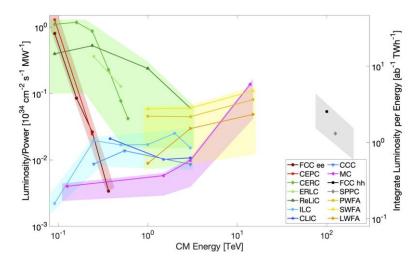
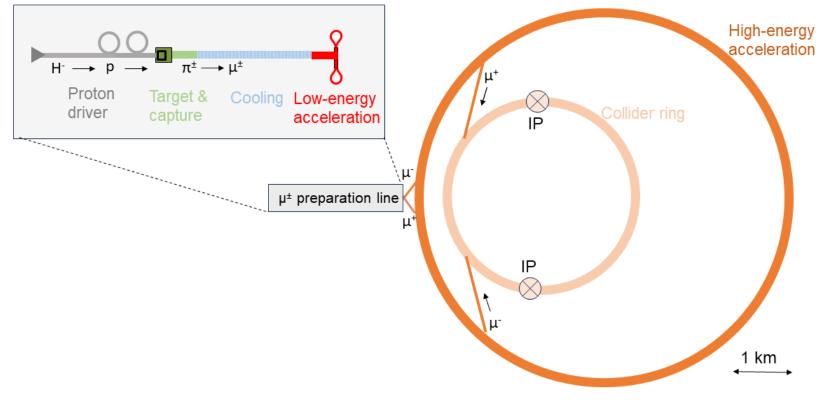

Muon Collider R&D


Diktys Stratakis (Fermilab) NuFact 2024, Argonne National Laboratory, USA September 18, 2024

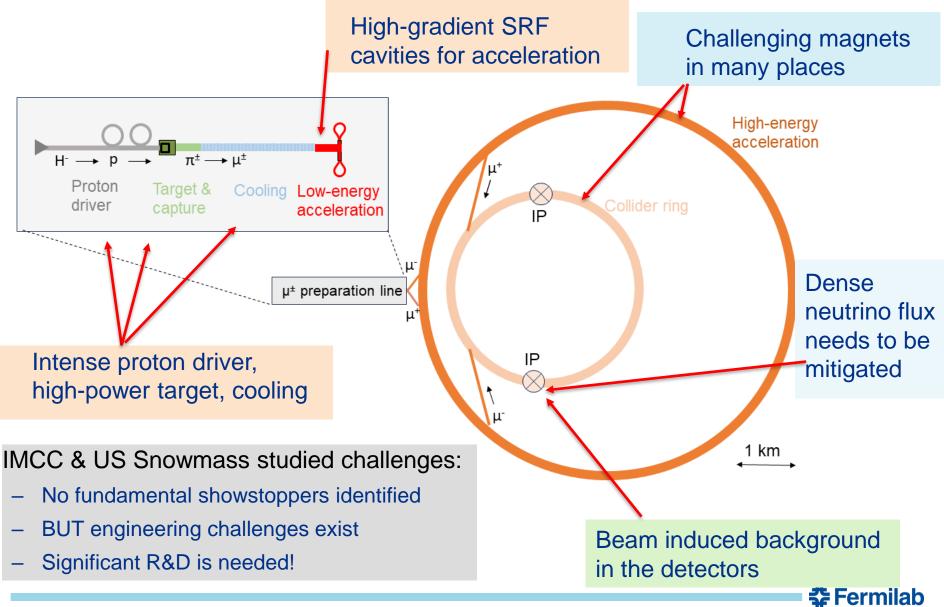
> On behalf of US Muon Collider R&D Panel and International Muon Collider Collaboration

Motivation

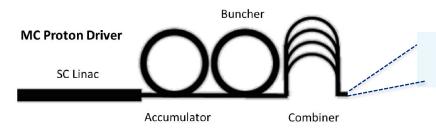
- Muons as compared to protons
 - Are leptons & use all energy in a collision
 - Need less collision energy for same physics
- Muons as compared electrons
 - Muons emit little synchrotron radiation
 - Acceleration in rings possible to many TeV
- A Muon Collider (MuC) can serve as energy reach and precision machine at the same time
- In a MuC, **luminosity** to power ratio improves substantially with energy


Global effort

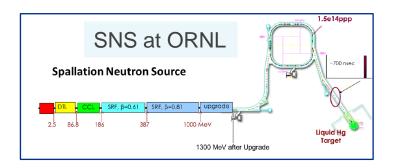
- 2011-2016: **Muon Accelerator Program** has developed key concepts, designs and technologies for a MuC up to 6 TeV.
- Strong surge of interest in MuC within the theoretical and experimental communities. Shift of emphasis towards **10 TeV**.
- In 2021, the International Muon Collaboration (IMCC) was formed
 - IMCC goal is to develop a baseline design of a 10 TeV MuC and build the associated R&D program for such machine. CERN is host for now.
 - Studies suggest that readiness of construction can achieved in the 2040s
- In 2023, the P5 panel recommended that the US should develop a collider with 10 TeV parton collision energies, such a MuC
 - "In particular, a MuC presents an attractive option both for technological innovation and for bringing energy frontier colliders back to the US"
 - "The US should participate in the IMCC and take a leading role in defining a reference design"

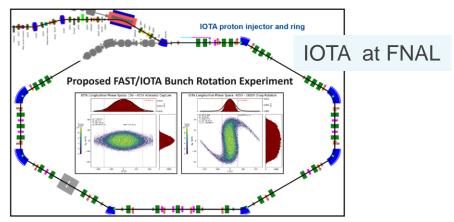

Machine overview

- Goal is to get to **10 TeV center-of-mass energy**
- Two approaches: Staging in energy (3 TeV to 10 TeV) or in luminosity

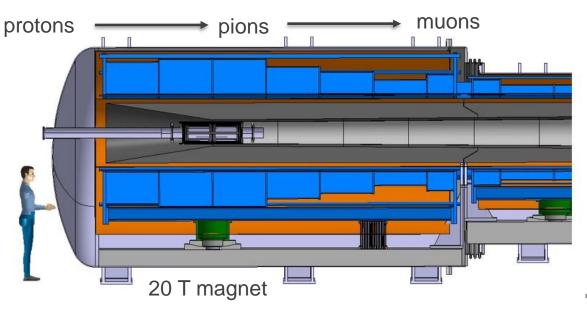


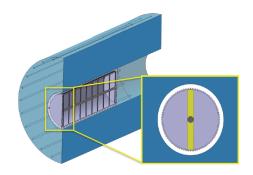
Challenges

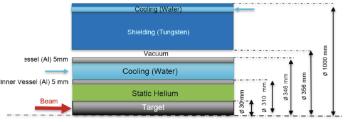



Proton driver

Optimum: 2-4 MW at 5-20 GeV, compressed at 1-3 ns @ 5-10 Hz

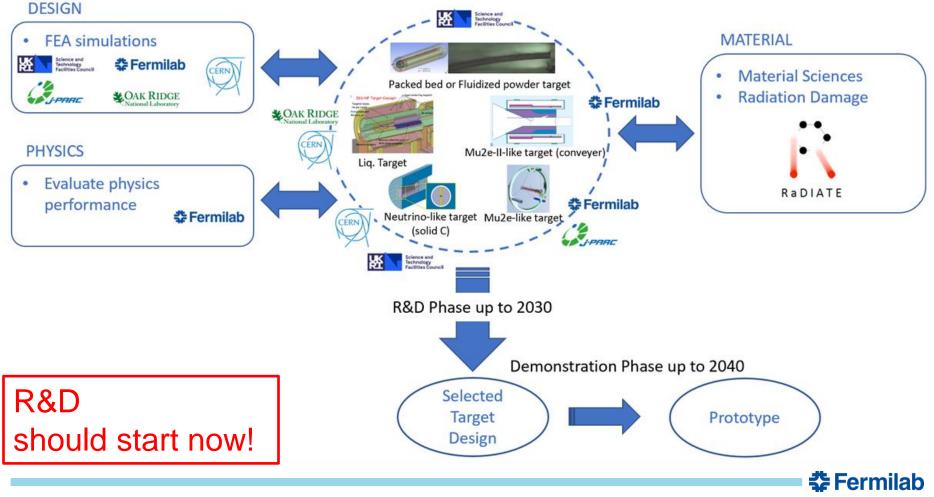

- Multi-MW proton sources exist globally (ex. PIP-II, SNS, ESS)
 - R&D is needed to adapt and extend such facilities to MuC requirements
- Involves beam manipulations that require experimental demonstrations
 - These can be studied at existing facilities that are analogs to a MuC proton driver



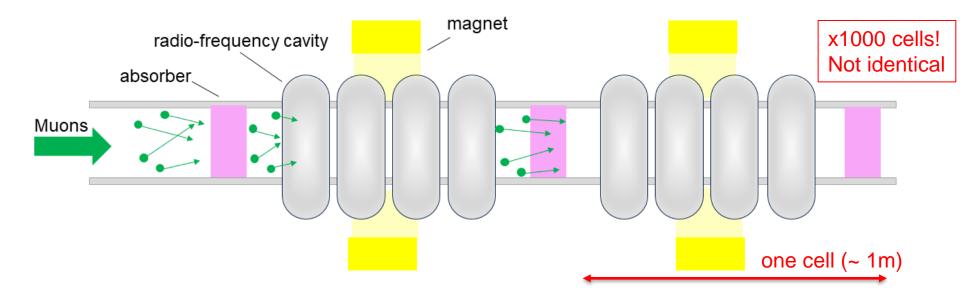

Target and capture

'igure 1: Current Muon Collider target 3D concept.

gure 2 schematically details the bodies, dimensions and vrials of the current proposal.



- In 2007, a proof-of principle test validated the concept with a liquid Hg target. Technology was OK but some safety concerns (<u>ref</u>)
- Recent work shows promising results with <u>graphite</u> or <u>tungsten</u> but still significant R&D is needed to confirm that
 - Puts MuC targets in synergistic path with ongoing and proposed experiments


🛟 Fermilab

MuC targetry roadmap

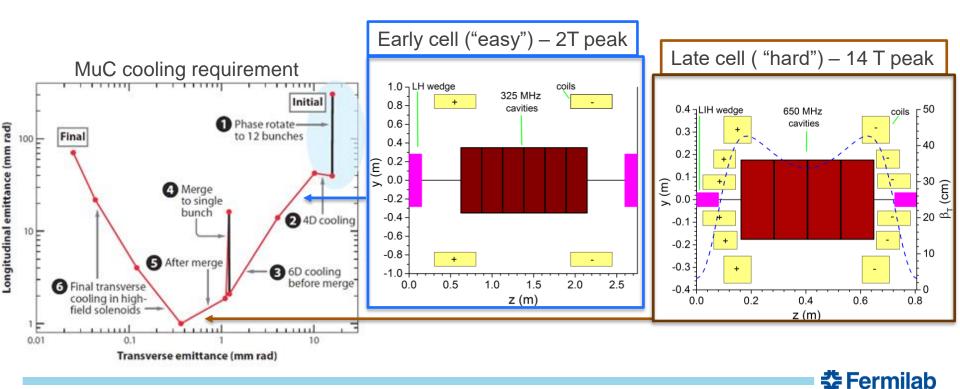
 MuC targets are included in the proposed GARD High Power Targetry Roadmap (<u>ref</u>) with a plan to have a prototype late 2030s

Ionization cooling

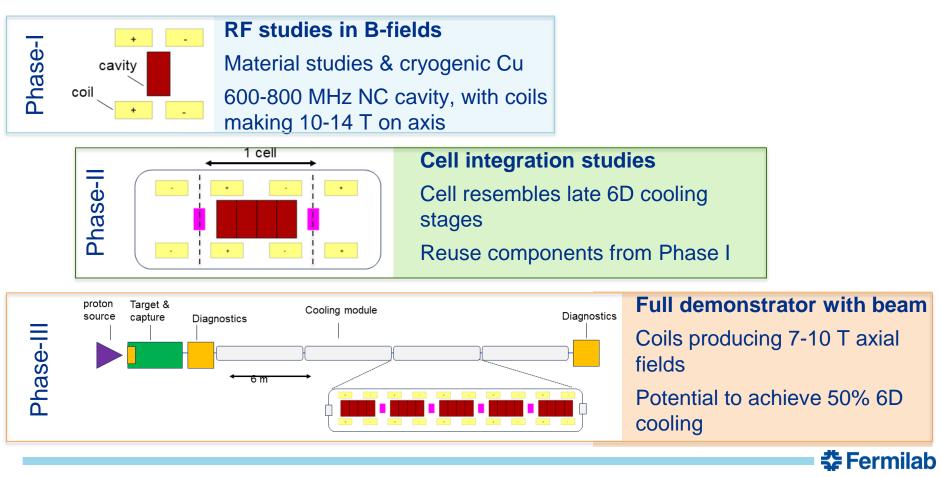
- Solenoids that start at 2 T and extend to 20+ T at the end
 - 32 T has been achieved in a SC solenoid with bore like that needed for cooling
- NC cavities (<1 GHz) that can sustain high-gradients in multi-T fields
 - This has been demonstrated with a 805 MHz @ 3 T; tests at higher fields need

🛟 Fermilab

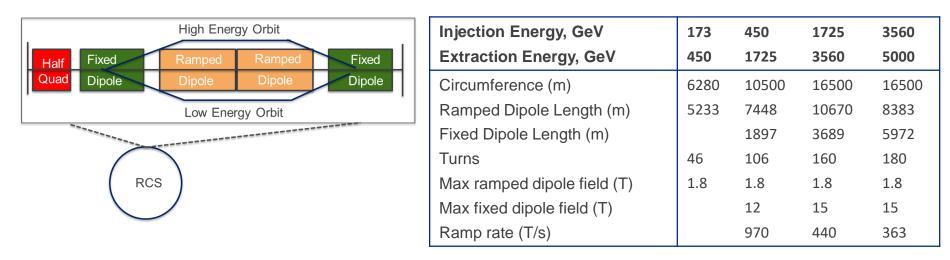
Muon cooling proof-of-principle experiment


- Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Lab (UK) demonstrated ionization cooling for the first time!
- A sample lattice was build and showed O(10%) transverse cooling

	solenoid	cavity	absorber	focus coil
nature				
Explore our content V Journal information V Publish with us V			1 99-70 13/45	
nature > articles > article				
Article Open Access Published: 05 February 2020				
Demonstration of cooling by the Muon Ionization				
Cooling Experiment	1 m m			
<section-header><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></section-header>				
		L J		

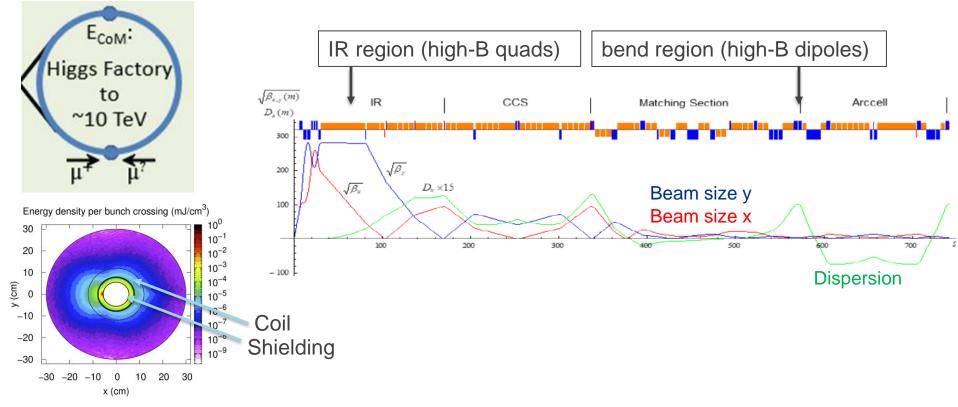

Ionization cooling design

- 6D emittance needs be cooled by 6-orders of magnitude
 - Concepts & designs in place to achieve this goal
- Further improvements are needed so that:
 - (1) take into account engineering aspects (2) improve performance with latest technology advances



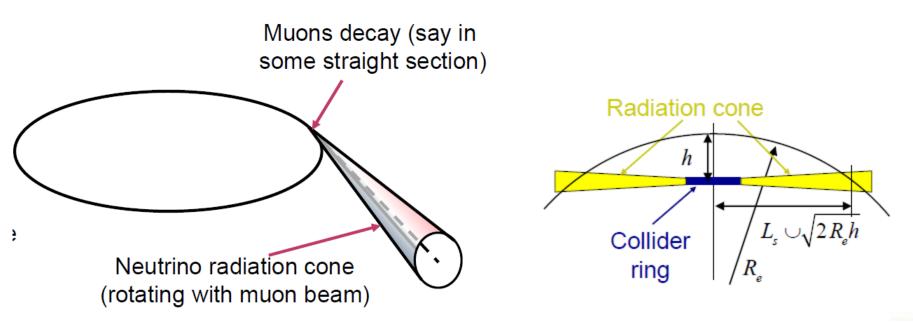
Muon cooling demonstrator roadmap

- Next step is to study integration by building ionization cooling cells that resemble a realistic channel
 - Parameters are aspirational and may change based on available resources


Muon Collider: TeV Acceleration

- TeV acceleration with Rapid Cycling Synchrotrons (RCS)
 - Conceptual designs in place for up to 5+5 TeV
 - Designs include a combination of fixed field SC magnets (12-15 T) with fast ramping magnets (up to 1000 T/s)
 - First HTS prototype achieved 300 T/s and plans underway to reach 1000 T/s
 - Developing an efficient power management for these pulsed magnets is a key aspect and more R&D is needed

Muon Collider: Collider ring

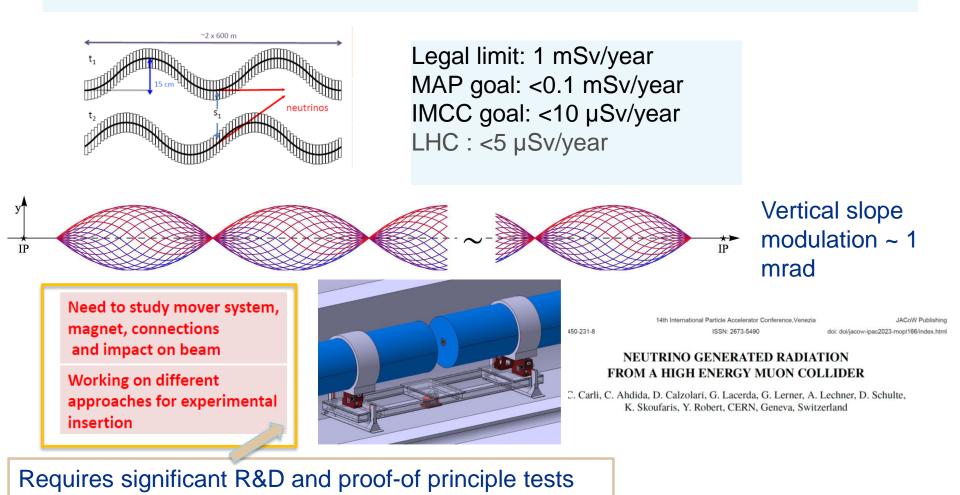


- Designs in place for 3 TeV MuC with specs within the HL-LHC range
- 10 TeV more challenging since it requires a smaller β (5 \rightarrow 1.5 mm)
 - Requires significant developments in HTS magnet space (IR Quads @ 15-20 T and 12-16 T dipoles with large aperture (~150 mm) for shielding

🛠 Fermilab

14 9/18/2024 NuFact 2024

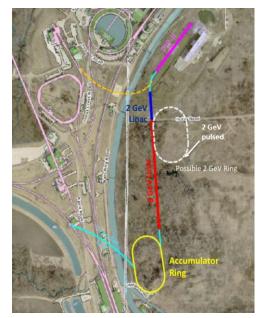
Neutrino radiation



- Radiation due to neutrino beam reaching the earth
 - Narrow radiation cone for a short piece of the machine
 - Strong increase of maximum dose with muon energy
 - Matter in front does not help but makes the situation worse

Neutrino flux mitigation system

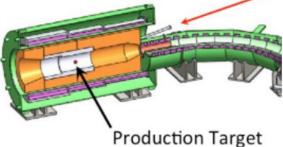
Solution: A mechanical system that will disperse the neutrino flux by periodically deforming the collider ring arcs vertically with remote movers;


口 Fermilab

Muon Collider in the US

- Fermilab Accelerator Complex Evolution plan opens a path towards supporting new muon facilities
- A design for a 10 TeV MuC in the Fermilab site has been developed
 - Assumes a booster replacement and extension of the PIP-II linac to 8 GeV
 - Acceleration rings fit in the Fermilab site and one can fit in the Tevatron ring

Energy	8 GeV		
Pulse Intensity	320 e12		
Number of Bunches	4		
Pulse Rate	10 Hz		
Beam Power	4 MW		
Bunch Length (AR)	20-40 ns		
Bunch Length (CR)	1-3 ns		
Ring Circumferences	300-500 m		
95% Norm. Emittance	120-216 π mm mrad		
Laslett Space-Charge limit	0.2-0.6		
• • • • • •			



Demonstrator possibilities in the US

- Designed to provide beam for the Muon g-2 and Mu2e experiments
 - Capable to deliver 8 kW beam at 8 GeV to the Mu2e production target
 - Available tunnel space to run the demonstrator without interfering with Mu2e
 - Production target is similar to the MuC target


mu2e Production Solenoid

Excellent opportunity to examine targets under 5 T field

US Muon Collider timeline

• By 2030, achieve enough technical maturity for the construction of the muon cooling demo facility in 2030s and potential construction of the collider facility in the 2040s.

🗲 Fermilab

US R&D accelerator roadmap (~5 year plan)

Design		Integrated design of all MuC subsystems Physics processes (space-charge, beam loading, radiation, HOM)	
Proton Driver):	Study needed beam manipulations at existing facilities (SNS, IOTA) Define additions to Fermilab accel. complex to support MuC	
Targets		Extend R&D program for high-power targetry & irradiated materials Synergistic with Fermilab ACE-MIRT and SNS	
Magnets		Design and modeling studies of late stage cooling solenoids Design and prototyping of demonstrator solenoids Design & prototyping of fast-ramping magnets & power supply	
RF Cavities		R&D on high-gradient NC cavity designs Design and prototype cavities for the demonstrator Conceptual designs of SRF for accelerator lattices	
Demonstrator		Conceptual design of a demonstrator for cooling technology Site exploration (CERN, Fermilab) & begin Phase-I of testing	

Muon Collider Meetings at Fermilab

 US Muon Collider Community Meeting August 7-9th, 2024 at Fermilab: <u>https://indico.fnal.gov/e/usmc2024</u>

Fermilab, Augu	ıst 7-9, 2024		Meeting gov/e/usmc2024
CONTINUE TINETAALE CONTRIBUTIONS ANGISTANTION POPER SESSION ORDATIING CONTITES NUMITING CONTITES NUMITING CONTITES SITE ACCESS FROCESS L Arrival at Fernilab L Trivian at Fernilab CORE OF CONTOCT NUMBER	HELCORE TO THE TRANSDRAL OF HOOS COLLERS CONTINUE WENTING We are inviting you to the inspiral meeting of the US Moon Collider community on August - 7-b at Fernilab. This will be an open meeting with the grinner you to take the next collaboration, angage breaker participation in the mono collider affort, familiaries new groups with the participation in the mono collider affort, familiaries new groups with the urrent statut of physics, accelerator and detector developments, and to detector developments, and to detector developments, and to a unitipate including a unitipate including a first. Wa milipate including a first. Wa milipate including the interior, will also develop the instensi workings of the collaboration, molding ratifying a constitution. The main andisone of the meeting in Sil-base about the interior workings.		Actors Regel BHL Actors
	Rembers of leadership of Broc will Rembers of Broc will be addreship of Broc will present the status from Europe and provide input on the collaboration model with CERN.	Organizing Committee	Sarah Coustreau (ORNI) Nathanie Calg (UCS8) Srichara Dasu (Wisconsin) Karri Folan Dipetritis (Chicaga) Spencer Gessner (SLAC) Tova Holmes (Tennessee) Walter Hopkins (ANL) Sergo Jindarian (IRNAL) Denatelia Lucchesi (UNIP)-INP Patrick Meade (Stany Brock) Isabel Ojalvo (Princeton) Simone Pagan Griso (IBNL)

International Muon Collider Collaboration: Demonstrator Workshop

October 30, 2024 to November 1, 2024 Fermilab - Wilson Hall US/Central timezone

Link: https://indico.fnal.gov/event/64984/

Next steps

- Muon Collider community plans to self-organize towards the formation of a US Muon Collider organization
- The goals will be
 - Facilitate collaborative work, communication and coordination across involved US institutions
 - Preparation and planning for deliverables for the Collider Panels (~ 5 years) and the next P5 (~10 years)
 - Conduct work related to studies of domestic sittings
 - Build next generation experts
- Assume all members are part of the IMCC too
- Help with preparation for the next European Strategy Update

Summary

- Realization of a Muon Collider requires significant R&D and a demonstrator/ prototyping program stretching over the next 2 decades
- Many opportunities to contribute to cutting-edge R&D: for university and national labs, student and professors, scientist and engineers
- Strong P5 support opens the door for a broader US engagement
- Currently in the US, limited funds are accessible via laboratory discretionary funds, university research programs and theory efforts
 - Expect funding to appear as we progress through the 3-year budget cycle at DOE
- Stay in touch
 - Join our mailing list here

Extra

