NOvA+T2K and NOvA oscillation results

Ryan Patterson Caltech

NuFact September 19, 2024

NOvA at a glance

Detector elements: PVC cells, liquid scintillator, WLS fibers, and APDs

NOvA Collaboration: 200+ members from 50 institutions in 8 countries

Ryan Patterson

NuFact 2024

Ryan Patterson

NuFact 2024

Oscillation results in this talk NOvA+T2K: data through 2020 NOvA only: data through 2023

Recent NuMI power record: 1.018 MW

Cumulative Exposure					
(III UII	<u>2020</u>	0 1	<u>2023</u>		
v beam:	14	\rightarrow	27		
v beam:	13	\rightarrow	13		

(now configured for $\overline{\nu}$ running)

Some recent papers – a wide scope!

- Active/sterile ν mixing
- CP-violating ν NSI
- Bayesian oscillation results
- $\nu_{\mu} \operatorname{CC} \pi^{0}$ differential XS
- v_e CC double-differential XS
- ν_{μ} CC double-differential XS
- Frequentist oscillation results
- Supernova ν with GW detections PRD 104, 063024 (2021)

arXiv:2409.04553 (submitted) arXiv:2403.07266 (submitted) PRD **110**, 012005 (2024) PRD **107**, 112008 (2023) PRD **130**, 051802 (2023) PRD **107**, 052011 (2023)

PRD 106, 032004 (2022)

Plus detailed NOvA content here at NuFact 2024:

NOvA XS measurements
3-flavor oscillations
HF-CRPA studies
EM detector response
Profiled Feldman-Cousins
Cosmic μ variation

Joshua Barrow (UMN) Jozef Trokan-Tenorio (W&M) Amit Pal (NISER) Dalton Myers (UT Austin) Andrew Dye (U Miss.) Amit Pal (NISER)

Ryan Patterson

- **o** Complementarity
 - Different energies \rightarrow Different balance of CPv and vMO effects
 - Power to break degeneracies

o Full implementations

- Energy reconstruction, detector response
- Detailed likelihoods and systematics suites
- Consistent statistical inferences
- Full dimensionality

o In-depth reviews

- Different analysis approaches driven by contrasting detector designs, energy scales
- Models, systematics, possible correlations

(both use off-axis detectors for a narrow-band spectrum)

- **o** Complementarity
 - Different energies \rightarrow Different balance of CPv and vMO effects
 - Power to break degeneracies

o Full implementations

- Energy reconstruction, detector response
- Detailed likelihoods and systematics suites
- Consistent statistical inferences
- Full dimensionality

In-depth reviews

- Different analysis approaches driven by contrasting detector designs, energy scales
- Models, systematics, possible correlations

(both use off-axis detectors for a narrow-band spectrum)

- Complementarity
 - Different energies \rightarrow Different balance of CPv and vMO effects
 - Power to break degeneracies

o Full implementations

- Energy reconstruction, detector response
- Detailed likelihoods and systematics suites
- Consistent statistical inferences
- Full dimensionality
- **o** In-depth reviews
 - Different analysis approaches driven by contrasting detector designs, energy scales
 - Models, systematics, possible correlations

Super-Kamiokande (SK) – T2K FD

Systematics and correlations, in brief

- Flux and detector uncertainties: no significant cross-experiment correlations present
- Cross sections:
 - ν_e / ν_μ and $\overline{\nu}_e / \overline{\nu}_\mu$ uncertainties are correlated between experiments in the joint fit (both already based on Day and MacFarland, PRD 86, 053003 (2012)
 - Other cross section parameters have **no practical, direct mapping**
- → Explore a variety of scenarios to **bracket impact**
 - *Example*: fabricate amplified systematics comparable in impact to statistical uncertainty
 - **Uncorrelated** and **correctly correlated** cases have **negligible differences**, while incorrectly correlating systematics shows a bias.

Based on a range of studies in this vein:

 \rightarrow No additional correlations need be applied given current experimental exposures

NuFact 2024

Alternative model tests

- Test robustness by fitting pseudo-data generated under various alternative models
 - *Example*: Suppress single pion production based on tune to MINERvA data, Phys. Rev. D **100**, 072005 (2019)
- No significant impact seen under all alternative models tested

Fit results: compatibility

Posterior predictive *p*-values* by sample

	NOvA	T2K	Combined
ν_e	0.90	0.19 (0p) 0.79 (1p)	0.62
$\overline{\nu}_{e}$	0.21	0.67	0.40
$oldsymbol{ u}_{\mu}$	0.68	0.48	0.62
$\overline{oldsymbol{ u}}_{\mu}$	0.38	0.87	0.72
Total	0.64	0.72	0.75

*Gelman, Meng and Stern, Stat. Sinica **6**, 733 (1996)

 $\overline{\nu}$ and T2K $\nu_e \ 1\pi$ plots in backup

$\boldsymbol{\theta}_{13}$ and $\boldsymbol{\theta}_{23}$

Without and with reactor θ_{13} constraint (lifts an LBL experiment degeneracy)

Octant and mass ordering

 θ_{23} octant preference

 $\frac{\text{Upper}: \text{Lower} = 78\%: 22\%}{(\text{Bayes factor} = 3.6)}$

And also compatible with maximal mixing

Mass ordering preference

 $\frac{\text{Inverted}: \text{Normal} = 58\%: 42\%}{(\text{Bayes factor} = 1.4)}$

(no significant preference)

NOvA+T2K+Daya Bay (with reactor Δm_{32}^2)

- Under wrong ν MO, reactor and long-baseline Δm_{32}^2 measurements will **disagree***
- Look for such tension \Rightarrow inform ν MO determination

NOvA+T2K fit with Daya Bay 2D (θ_{13} , Δm_{32}^2) constraint:

vMO preference
Normal : Inverted = 59% : 41%
(Bayes factor = 1.4)

(flipped preference relative to previous slide, but still not significant)

* Nunokawa, Parke and Funchal, PRD 72, 013009 (2005); Parke and Funchal, arXiv:2404.08733

Ryan Patterson

δ_{CP} and J_{CP}

At and around $\delta_{CP} = \pi/2$ lies outside 3σ credible interval (regardless of mass ordering) If the ordering is inverted, CP conserving values lie outside 3σ credible interval $(\delta_{CP} = 0, \pi; Jarlskog invariant^{**} J_{CP} = 0)$

* only the right plot assumes IO; left plot shows posterior over both ν MO simultaneously ** tested with prior uniform in sin δ_{CP} or δ_{CP}

Ryan Patterson

NuFact 2024

Latest NOvA oscillation results

(highlights)

Jozef Trokan-Tenorio gave a detailed view earlier this week

What's new in 2024 version

- **Double the neutrino-mode data** relative to 2020-era analysis!
- New **low-energy** ν_e sample:

- Improved *n*-¹²C inelastic scattering model; informs systematic uncertainty MENATE_R model; P. Désesquelles et al., NIM A 307, 366 (1991); Z. Kohley et al., NIM A 682, 59 (2012)
- Additional freedom + uncertainties in **RES and DIS models**
- Improved **light production model** in detector simulation
 - \rightarrow Better data/simulation agreement at high dE/dx

Ryan Patterson

19

Mass ordering and δ_{CP}

NOvA data favor combinations where mass ordering and CP effects cancel

NOvA Preliminary

Ryan Patterson

$\boldsymbol{\theta}_{23}$ and $\boldsymbol{\delta}_{\mathrm{CP}}$

NOvA Preliminary

NOvA Preliminary

Consistent with previous NOvA result, with improved constraints *T2K*, *T2K*+*NOvA*, and *T2K*+*SK* also shown

NuFact 2024

Δm_{32}^2 and θ_{23}

NOvA Preliminary

Global consistency

Maximal mixing consistency

Ryan Patterson

NuFact 2024

Mass ordering preference

Normal ordering preference

(and Bayes factor)

69 %	76 %	87%
(2.2)	(3.2)	(6.8)

Closing

2024 NOvA oscillation results

- **Doubled** neutrino data set plus **analysis upgrades**. Improved constraints with consistent overall picture:
 - \rightarrow Data favor "degenerate" mass ordering/ δ_{CP} points
 - \rightarrow With 2D reactor constraint, normal ordering pref. at 87%
 - \rightarrow Excellent precision on Δm_{32}^2

For next step in sensitivity, aim to double antineutrino data set

 \rightarrow Further systematics reduction also in the works

NOvA+T2K joint result (Using earlier data sets)

- Fit demonstrates **compatibility** of the datasets. From joint fit:
 - $\rightarrow \delta_{\rm CP} = \pi/2$ (and vicinity) lies outside 3σ C.I. for both orderings
 - \rightarrow If inverted ordering, CP conserving points lie **outside** 3 σ C.I.
 - \rightarrow Excellent precision on Δm_{32}^2
- Both experiments **continue to collect data.** More to come here!

Closing

2024 NOvA oscillation results

- Doubled neutrino data set plus analysis upgrades. Improved constraints with consistent overall picture:
 - \rightarrow Data favor "degenerate" mass ordering/ δ_{CP} points
 - \rightarrow With 2D reactor constraint, normal ordering pref. at 87%
 - \rightarrow Excellent precision on Δm_{32}^2

For next step in sensitivity, aim to double antineutrino data set

 \rightarrow Further systematics reduction also in the works

NOvA+T2K joint result (Using earlier data sets)

- Fit demonstrates **compatibility** of the datasets. From joint fit:
 - $\rightarrow \delta_{CP} = \pi/2$ (and vicinity) lies outside 3σ C.I. for both orderings
 - \rightarrow If inverted ordering, CP conserving points lie **outside** 3 σ C.I.
 - \rightarrow Excellent precision on Δm_{32}^2
- Both experiments **continue to collect data.** More to come here!

So	me recent papers – a v	vide scope!		
	• Active/sterile v mixing	arXiv:2409.04553 (submitted)		
	• CP-violating ν NSI	arXiv:2403.07266 (submitted)		
	Bayesian oscillation results	PRD 110, 012005 (2024)		
	• $\nu_{\mu} CC \pi^{0}$ differential XS	PRD 107, 112008 (2023)		
	• v_e CC double-differential XS	PRD 130, 051802 (2023)		
	• ν_{μ} CC double-differential XS	PRD 107, 052011 (2023)		
	• Frequentist oscillation results	PRD 106, 032004 (2022)		
	• Supernova ν with GW detections	PRD 104, 063024 (2021)		
	Plus detailed NOvA	content here at NuFact 2024:		
	NOvA XS measuremen	ts Joshua Barrow (UMN)		
	3-flavor oscillations	Jozef Trokan-Tenorio (W&M)		
	HF-CRPA studies	Amit Pal (NISER)		
	EM detector response	Dalton Myers (UT Austin)		
	Profiled Feldman-Cous	ins Andrew Dye (U Miss.)		
	Cosmic μ variation	Amit Pal (NISER)		

Reminder of Slide 6!

- **o** Complementarity
 - Different energies \rightarrow Different balance of CPv and vMO effects
 - Power to break degeneracies

• Full implementations

- Energy reconstruction, detector response
- Detailed likelihoods and systematics suites
- Consistent statistical inferences
- Full dimensionality
- In-depth reviews
 - Different analysis approaches driven by contrasting detector designs, energy scales
 - Models, systematics, possible correlations

29

Constructing the fit

Using both experiments' full likelihoods

<u>All</u> analysis details, <u>all</u> parameters (oscillation and nuisance) Access each other's likelihood via containerized environment

Systematics / model connections?

<u>Flux</u>

- Many aspects unrelated
- *For hadron production*: thin vs. thick target data, different energies, tunings
- Different analysis connections
 - \rightarrow No significant correlations

v interactions

- Different energies, nuclei, models, analysis contexts
- However, same underlying physics
 - → Investigate potential impact of model correlations

Detector response

- Nearly all aspects unrelated.
- For shared secondary interactions: different selections and energy reconstruction techniques (*e.g.*, inclusive vs. exclusive samples)
 - \rightarrow No significant correlations

Joint fit: Alternate model tests

- Models that had the largest impact on T2K's 2020-era fit plus two cross-experiment model checks:
 - <u>Non-QE</u>: ND280 CC0 π data are under-predicted by the T2K pre-fit prediction. This difference can be taken accounted for by the large freedom in the CCQE model. To check this large freedom does not cause bias, an alternate model where this under-prediction is attribution to only non-QE processes is produced.
 - <u>Minerva 1</u> π : suppression of CC and NC resonant pion production at low-Q² for GENIE v2 implementation of Rein-Seghal model to describe the data.
 - <u>Pion SI</u>: GEANT4 model* was replaced with NEUT's Salcedo–Oset model**

^{*} S. Agostinelli et al., (The GEANT4 collaboration), Nucl. Instrum. Meth. A 506 (2003) 250–303 SLAC-PUB-9350

^{**} L. L. Salcedo, E. Oset, M. J. Vicente-Vacas, and C. Garcia-Recio, Nucl. Phys. A 484 (1988) 557–592 Print-87-1084 (Valencia)

Joint fit: Alternate model tests

- Small "error on the error" \rightarrow width of the 1D intervals changes by <10%
- Movement of central value (center of interval) well covered by systematic uncertainty (center moves by < 50% of systematic uncertainty)

Alternate Model	Δm_{32}^2 Change in 1D contour < 10%	Δm^2_{32} Bias in central value < 50%	$\sin^2 \theta_{23}$ Change in 1D contour < 10%	$\sin^2 \theta_{23}$ Bias in central value < 50%
Non-QE	<	<	<	<
Minerva1p	✓	\checkmark	\checkmark	\checkmark
Pion-SI	<	<	<	<
NOvA-like	<	\checkmark	<	\checkmark
T2K-like	<	~	<	V

Joint fit: Alternate model tests

- Discrete model tests:
 - Fractional change in Bayes factor for mass ordering and octant seen in pseudo-data tests should not change any conclusions if applied to data
- Test whether alternate models could change our conclusions on the CPv significance

Alternate Model	Conclusion on δ_{CP}	Conclusions on J	Mass Ordering Fractional change in BF	Octant Fractional change in BF
Non-QE	~	<	1.02	0.88
Minerva1p	<	\checkmark	1.03	0.92
Pion-SI	<	~	0.94	1.11
NOvA-like	<	\checkmark	1.10	1.00
T2K-like	<	<	1.08	1.16

Minerval π pseudo-data fits

Ryan Patterson

NuFact 2024

- Hartree Fock (HF) Continuum Random Phase Approximation (CRPA)*
- Applies modifications to the nuclear models (Spectral Function for T2K, Local Fermi Gas for NOvA)
- Recent T2K analyses have included an additional smearing on Δm^2_{32} based on variations seen when considering the HF-CRPA nuclear model.
 - Both NOvA and T2K independently studied the impact of this alternate nuclear model on their 2020-era analyses.
 - When taken together in the context of the joint fit, the bias is no larger than the thresholds set for any of the fake data metrics.

* Phys. Rev. D 106, 073001 (2022)

Model & Systematics comparison

Category	NOvA Parameters	T2K Parameters	
		MOE	
		M _A QE	
		Q2_norm_0	
		Q2_norm_1	
		Q2_norm_2	
	ZNormCCQE	Q2_norm_3	
	ZExpAxialFFSyst2020_EV1	Q2_norm_4	
CCQE	ZExpAxialFFSyst2020_EV2	Q2_norm_5	
	ZExpAxialFFSyst2020_EV3	Q2_norm_6	
	ZExpAxialFFSyst2020_EV4	Q2_norm_7	
	RPAShapeenh2020	EB Dial C nu	
	RPAShapesupp2020	EB Dial C nubar	
		EB Dial O nu	
		EB Dial O nubar	
		2p2h Norm nu	Ī
		2p2h Norm nubar	
	MECEnuShape2020Nu	2p2h C to O	
	MECEnuShape2020AntiNu	2p2h Shape C	
MEC	MECShape2020Nu	2p2h Shape O	
	MECShape2020AntiNu	2p2h Edep low Enu	
	MECInitStateNPFrac2020Nu	2p2h Edep high Enu	
	MECInitStateNPFrac2020AntiNu	2p2h Edep low Enubar	
		2p2h Edep high Enubar	
	MaCCRES		
	MvCCRES	CA5	
RES	MaNCRES	MA RES	
	MvNCRES	ISO Bkg Low PPi	
	LowQ2RESSupp2020	ISO Bkg	
		FEFQE	t I
		FEFQEH	
FSI	hNFSI_MFP_2020	FEFINEL	
	hNFSI_FateFracEV1_2020	FEFABS	

Models and systematics used for 2020 analysis [NOVA: PhysRevD.106.032004, T2K:arXiv:2303.03222v1] are used in the joint fit.
The base-models are tuned to internal (NOvA-ND data by NOvA) and external datasets.
The tuning modifies the underlying models drastically

(eg: NOvA's 2p2h tune.)

IFCChana9090Nu	OnOh Chang O							
CShape2020AntiNu nitStateNPFrac2020Nu	2p2h Edep low Enu 2p2h Edep high Enu	Experiment	Generator	QE	MEC/2p2h	RES	DIS	FSI
tStateNPFrac2020AntiNu	2p2h Edep low Enubar 2p2h Edep high Enubar	NOvA	GENIE v3.0.6	Local Fermi Gas	Valencia*	Berger-	Bodek-Yang	hN Semi
MaCCRES				Z-expansion		Sehgal		Classical
MvCCRES	CA5			avial form factor	(*)			Casada
MaNCRES	MA RES				(*with NOvA 2020			Cascade
MvNCRES	ISO Bkg Low PPi				turie)			("fit to pion scattering da
wQ2RESSupp2020	ISO Bkg							
	FEFQE	T2K	NEUT 5.4	Spectral	Valencia	Rein-	Bodek-Yang	Semi-
	FEFQEH			Function		Sehgal		Classical
hNFSI_MFP_2020	FEFINEL					Congai		
SI_FateFracEV1_2020	FEFABS			IVIA TORM TACTOR				Cascade
	FEFCX							

ND NOvA Simulation

Updated RES and DIS uncertainties

Showing level of effect on hadronic visible energy in Near Detector

NOvA Preliminary

Updated light model

a look at protons and muons as standard candles

NOvA Near Detector Samples (neutrino mode)

 v_{μ} candidates informs FD v_{μ} and v_{e} predictions ve candidates informs FD ve backgrounds Dominated by beam ve (irreducible)

NOvA cross section model:

GENIE 3.0.6 custom configuration tuned to external data and NOvA ND Data, with expanded uncertainty suite

NOvA Preliminary

Neutrino - free nucleon interactions				
Quasi-Elastic (QE)	Valencia 1p1h Z-expansion axial form factor			
Resonance (RES)	Berger-Sehgal			
Deep inelastic Scattering (DIS)	Bodek-Yang			
Multinucleon interactions				
Meson exchange current (MEC)	Valencia MEC custom adjustment to NOvA data for 2p2h			
Interactions with the nuclear environment				
Final State Interactions (FSI)	hN Semi Classical Cascade Custom fit to external pion scattering data.			

Example of systematic uncertainty mitigation

